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Chapter 0 Review on Probability

I. Probability Space. A probability space is a triple (£, F, P).
e () is a set called the sample space. An element w € € is called an outcome.

e F is a nonempty set of subsets of (2, called the event space (whose elements called
events), such that

(a) Qe F.
(b) If A € F then A° € F.
(c) IfA; e F,i=1,2,---, then UX A, € F.
A collection of subsets with these three properties is called a o-algebra or o-field.
e P: F —|0,1] is called the probability measure over the event space F, satisfying
(a) P(Q2) =1.
(b) 0< P(A)<1,VAeF.
(c) P(U A;) =50, P(A;), V{A;}?, (n can be finite or infinite) which is disjoint.

Conditional probability: Let A, B be two events. The probability that B happens given that
A occurs is denoted by

_ P(ANDB)
P(B|A) := 2 for P(A) # 0. (1)
To compute P(A N B), one may use formulas
P(ANB) = P(B|A)P(A) or P(AN B) = P(A|B)P(B). (2)

We say A and B are independent if P(B|A) = P(B), i.e.
P(ANB)=P(A)P(B). (3)

Let A be fixed, Pa(:) := P(-]A) is called the conditional probability measure.

For any event B, to compute P(B), we may first find all possible events that cause B, for
instance, () is the union of disjoint events Ay, --- , A, and under this disjoint decomposition
we also know how to compute P(B|A;) and P(A;) for each i. Then

P(B) =Y P(BIA)P(A). (4)



Moreover, we can also compute the probability of each cause event A; subject to the caused
event B in the way that
P(A;N B) P(BJA)P(A)

PAIB) = =G = S, P(BIA)P(A) ©)

This is the so-called Bayes’ formula.

II. Random Variables and Distributions. A random variable (r.v.) X on (2, F, P) is a
function from €2 to R, that is to assign each outcome with a real value. X is called a discrete
r.v. if the range of X is a discrete set. X is called a continuous r.v. if the range of X is an
interval of R, for instance.

Discrete r.v.: Assume that the range of X is given by S = {k}_, (N can be finite or
infinite). S is called the state space.

p=PX=k), kE=0,1,--- N, (6)

is called the probability density function (p.d.f.) of X. Here X = k means the event

{X=k}={weQ: X(w)=k} e F. (7)
Note
0<p <1, Zpkzl- (8)
keS

The following examples are important:
(a) Binomial r.v.: It means a r.v. X having the p.d.f.:

P(X =k)= (Z) PPL—p) Tk, 0<k<n. (9)

For instance, we perform n independent trials. At each trial, the success probability
is p and the failure probability is 1 — p. Let X be the number of successes in n trials.
Then, X is a binomial r.v. given as above.

(b) Geometric r.v.: Let X denote the number of trials for the first success, then
P(X =k =pl-p*' Ek=12...
is the probability that the first occurrence of success requires k independent trials.

(c) Poisson r.v.: It means a r.v. X having the p.d.f.:

X

P(X=Fk)=e ik

k=0,1,2,---, (10)
where A > 0 is called the rate parameter. There are many models obeying the Poisson

distribution. A general model is given as follows. An event can occur 0, 1, 2, --- times
in an interval. The average number of events in an interval is designated A > 0. Let X
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be the NO of events observed in an interval. Then, X is a Poisson r.v. given as above.
For instance, X may denote the NO of arrivals in a unit time with A > 0 meaning the
rate of arrivals. Note that given A > 0, by letting n — oo with np = A, the binomial
distribution converges to the Poisson distribution, i.e.

lim (Z) I (1)

n—00,np=A>0

for each k =0,1,2,--- .

Continuous r.v.: Assume that there is a nonnegative function f(-) such that

P(angb):/bf(t)dt, o <a<h< oo (12)

Then, X is a continuous r.v. and f is called the p.d.f. of X. Here a < X < b means the
event {a < X <b} ={weQ: a< X(w)<b}. Note

@) >0, /_OO f@)do = 1. (13)

The following are important examples:

(a) Uniform p.d.f.:
ifa <z <D,

f@)={ b—a (14)

0 otherwise.

(b) Exponential p.d.f.:

e ™ if ¢ > 0,
flz) = _ (15)
0 otherwise.
(¢) Normal p.d.f.:
1 _(e—w)?
F(@) =~ T = N(p,0?). (16)

V2o

See below for the meaning of p and ¢ > 0. N(0,1) is called the standard normal
distribution.

ITI. Expectation and Variance. The expectation (or mean) of X is defined by

p=E(X):=) kp or /_OO zf(z) de. (17)

kes
The 2nd moment of X is defined by
E(X?) = Z k*pe  or / 2? f () dx. (18)
kes o



The variance of X is defined by

0? = Var (X) = E(X —p)* = B(X?) — i*. (19)
Conditional Expectation: In the discrete case, suppose that (X,Y’) has a joint p.d.f.:
p(zi,y;) = P(X = 23, Y = y;). (20)
Then,
B =) = S =l =) = S @1

j
where p(z;) :== >, p(zi, y;) is the p.d.f. of X. Therefore, fixing Y, we may regard F(Y|X)
as a r.v. with the p.d.f. given above. In the continuous case, suppose that (X,Y") has a joint
p.d.f. f(z,y) such that

¢y
P(X <z,Y<y)= / / f(u,v) dvdu. (22)
Then,
IR
EY|X=x —/ Y dy, 23
vix == [ I (23
where f(z) = [* f(z,y)dyis the p.d.f. of X. Similar to the discrete case, fixing YV, E(Y|X)

can be regarded as a continuous r.v. with the p.d.f. given above.

IV. Sequence of r.v.’s By repeating a random experiment at time n = 0,1, --- indepen-
dently, we obtain a sequence of independent and identically distributed (ii.d.) r.v. {X,}22,.
To describe {X,,}52,, we have the following two basic theorems in probability:

e Law of Large Numbers: Assume p = E(X,,) for each n. The weak law of large numbers
says that for any € > 0,

Xo+-+ X,
limP( ot 1—u‘26):o. (24)
n—o00 n
The strong law of large numbers says that
Xo+-+ X,
P(lim U 1=u):1- (25)
n— 00 n

e Central Limit Theorem: Assume p = E(X,,) and 0 = Var(X,,) for each n. The central
limit theorem says that the p.d.f. of

Xo+ -+ Xy —np
o\/n

tends to the standard normal p.d.f. N(0,1) as n — oo.

(26)

However, in many cases {X,}°°, may not be independent, and indeed there exists a sort
of dependence relation. In general, {X,}5°, is called a (discrete) stochastic process and
{X:i}>0 is called a continuous stochastic process. The goal of this elementary course is to
consider the “Markov” process (to be defined) in the discrete and continuous time.
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