
Solution 7-9

Assignment 7

Q1

(a) Let f(x) = 1
2∥x∥

2 and h(x) = Ax− b. Define a Lagrangian function by

L(x, µ) =
1

2
∥x∥2 + µT (Ax− b)

where x = (x1, . . . , xn) and µT is a 1×m row vector. Then, we compute

∇L(x, µ) = x+ATµ

Then, we have ∇L(x, µ) = 0 ⇐⇒ ATµ = −x ⇐⇒ x = −ATµ. Since
∇2

xL(x, µ) = 1 > 0, so we have inf
x∈Rn:Ax=b

L(x, µ) = L(−ATµ, µ). Putting

x = −ATµ to L(x, µ), we have

L(−ATµ, µ) =
1

2
∥ −ATµ∥2 + µT (A(−ATµ)− b)

=
1

2
(ATµ)T (ATµ)− µTAATµ− µT b

= −1

2
µTAATµ− µT b

Thus, the dual problem (D) is

max
µ∈Rn

(
−1

2
µTAATµ− µT b

)
(b) Hence, we define d(µ) = − 1

2µ
TAATµ− µT b. Then, we have

∇µd(µ) = −AATµ− b

Then, we have ∇µd(µ) = 0 ⇐⇒ −AATµ − b = 0 ⇐⇒ AATµ = −b.
Since ∇2

µd(µ) = −AAT ≺ 0 which is negative definite, and it is clear that the

dual problem has a unique solution if and only if AAT is invertible so that
µ = −(AAT )−1b, or equivalently, A has rank m.
(c) In this case, from (b), this dual solution is given by µ = −(AAT )−1b. Thus,
the minimizer to the problem is

x∗ = −AT
(
−(AAT )−1b

)
= AT (AAT )−1b
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Q2

See the reference book G. Lan, First-order and Stochastic Optimization Methods
for Machine Learning, Spriner 2020.

Q3

Define

f(x, y, z) =
1

2
[(x− 2)2 + y2 + z2],

g1(x, y, z) = x2 + y2 − 1,

g2(x, y, z) = y + z.

Clearly, f , g1, and g2 are convex functions. Consider the feasible set K as

K := {(x, y, z) : x2 + y2 ≤ 1, y + z ≤ 0}.

As limx2+y2+z2→+∞ f(x, y, z) = +∞, so f is a coercive function, so there exists
a minimizer (x∗, y∗, z∗) ∈ K as a solution to the problem. Define the Lagrangian
function as

L(x, y, z, λ1, λ2) =
1

2
[(x− 2)2 + y2 + z2] + λ1(x

2 + y2 − 1) + λ2(y + z)

for λ1, λ2 ≥ 0. Now, we compute

∇(x,y,z)L =

 x− 2 + 2λ1x
y + 2λ1y + λ2

z + λ2

 .

By Euler’s first-order condition, setting ∇(x,y,z)L = 0, we have
x =

2

1 + 2λ1
,

y = − λ2

1 + 2λ1
,

z = −λ2.

So, we have

min
(x,y,z)

L(x, y, z, λ1, λ2)

= L

(
2

1 + 2λ1
,− λ2

1 + 2λ1
,−λ2, λ1, λ2

)
=

1

2

[(
−4λ1

1 + 2λ1

)2

+

(
− λ2

1 + 2λ1

)2

+ λ2
2

]
+ λ1

[(
2

1 + 2λ1

)2

+

(
− λ2

1 + 2λ1

)2

− 1

]
+ λ2

[
− λ2

1 + 2λ1
− λ2

]
=

−2λ2
1 − 3λ1 + λ1λ

2
2 + λ2

2

1 + 2λ1
.

2



Now, we define d(λ1, λ2) =
−2λ2

1−3λ1+λ1λ
2
2+λ2

2

1+2λ1
for λ1, λ2 ≥ 0. Then, we compute

∇d(λ1, λ2) =

(
− 4λ2

1+4λ1−λ2
2−3

(1+2λ1)2

− 2(λ1+1)λ2

1+2λ1

)
.

By Euler’s first-order condition, we set ∇d(λ1, λ2) = 0. We have{
2(1 + λ1)λ2 = 0,

4λ2
1 + 4λ1 − λ2

2 − 3 = 0.

Then, we have λ1 = −1 or λ2 = 0.
- **Case 1: λ1 = −1**
Then putting in the second equation, we have

4(−1)2 + 4(−1)− λ2
2 − 3 = 0 =⇒ λ2

2 = −3.

This is rejected since λ2 ≥ 0.
- **Case 2: λ2 = 0**
Putting into the second equation, we have

4λ2
1+4λ1−3 = 0 =⇒ (2λ1−1)(2λ1+3) = 0 =⇒ λ1 =

1

2
or λ1 = −3

2
(rejected).

Therefore, we have (λ∗
1, λ

∗
2) =

(
1
2 , 0
)
to be the optimal solution to the

dual problem. Thus, the optimal solution to the minimization problem is
(x∗, y∗, z∗) = (1, 0, 0) and

min
x2+y2≤1, y+z≤0

1

2

[
(x− 2)2 + y2 + z2

]
=

1

2
.

Assignment 8

Q1

(a) The feasible set is

K =
{
(x1, x2) : (x1 − 1)2 + (x2 − 1)2 ≤ 1, (x1 − 1)2 + (x2 + 1)2 ≤ 1

}
=
{
(x1, x2) : (x1 − 1)2 + (x2 − 1)2 ≤ 1

}
∩
{
(x1, x2) : (x1 − 1)2 + (x2 + 1)2 ≤ 1

}
= {(1, 0)}.

and the optimal solution x∗ ∈ K = {(1, 0)}, so x∗ = (1, 0).
(b) For (x∗

1, x
∗
2) ∈ K, and λ1, λ2 ≥ 0, the KKT condition is

(
2x∗

1

2x∗
2

)
+ λ1

(
2(x∗

1 − 1)

2(x∗
2 − 1)

)
+ λ2

(
2(x∗

1 − 1)

2(x∗
2 + 1)

)
=

(
0

0

)
,

λ1((x
∗
1 − 1)2 + (x∗

2 − 1)2 − 1) = 0,

λ2((x
∗
1 − 1)2 + (x∗

2 + 1)2 − 1) = 0.
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Suppose there exists such λ∗
1, λ

∗
2. From (a), since x∗ = (x∗

1, x
∗
2) = (1, 0) is an

optimal solution. Plugging into the first equation, it gives(
2
0

)
+ λ∗

1

(
2(1− 1)
2(0− 1)

)
+ λ∗

2

(
2(1− 1)
2(0 + 1)

)
=

(
0
0

)
.

which gives a contradiction! So, there does not exist such λ∗
1, λ

∗
2 such that x∗,

(λ∗
1, λ

∗
2) satisfy the above KKT conditions.

Q2

Since x∗ ∈ Rn, λ∗ ∈ Rm satisfy the KKT conditions, then we have

⟨∇f(x∗), x− x∗⟩ =

〈
−

m∑
i=1

λ∗
i gi(x

∗), x− x∗

〉

= −
m∑
i=1

λ∗
i ⟨gi(x∗), x− x∗⟩

= −
m∑
i=1

λ∗
i ⟨∇gi(x

∗), x− x∗⟩.

As gi are convex, so for any t ∈ (0, 1), we have

gi(tx+ (1− t)x∗) ≤ tgi(x) + (1− t)gi(x
∗).

And by Taylor’s expansion, we have

gi(x) = gi(x
∗) + t⟨∇gi(x

∗), x− x∗⟩+ t2

2
(x− x∗)T Hess(gi)(x− x∗)

≥ gi(x
∗) + t⟨∇gi(x

∗), x− x∗⟩ (∵ Hess(gi) ≥ 0 by convexity)

⟨∇gi(x
∗), x− x∗⟩ ≤ 1

t

(
gi(x)− gi(x

∗)
)
.

Thus, we have

⟨∇f(x∗), x− x∗⟩ = −
m∑
i=1

λ∗
i ⟨∇gi(x

∗), x− x∗⟩

≥ 1

t

m∑
i=1

λ∗
i

(
gi(x

∗)− gi(x)
)

=
−1

t

m∑
i=1

λ∗
i︸︷︷︸

≥0

gi(x)︸ ︷︷ ︸
≤0

≥ 0

for all feasible x.
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Q3

(a)

f∗(d) =

{
−N −

∑N
i=1 log(−di) if d ∈ RN

− ,

+∞ otherwise.

(b) f∗(d) = 1
4 (d− b)TA−1(d− b)− c

(c) f∗(d) =

{
0 if ∥d∥ ≤ 1,

+∞ otherwise.

Assignment 9

Q1

(i) Define f(x) = 1
2x

TQx+ cTx and the feasible region

K :=
{
x ∈ RN : l ≤ xk ≤ u, ∀k = 1, . . . , N

}
.

Now, we check the following conditions:
- K is convex and closed:
For any x, y ∈ K and t ∈ (0, 1), then

tx+ (1− t)y = t

x1

...
xN

+ (1− t)

 y1
...
yN


=

 tx1 + (1− t)y1
...

txN + (1− t)yN

 .

Since for each k = 1, . . . , N , we have ℓ ≤ xk, yk ≤ u, and so we have

ℓ ≤ txk + (1− t)yk ≤ u,

this implies that tx+ (1− t)y ∈ K, so K is convex. The closeness of K is due
to K = K̄.

- Hess(f) ⪰ αIN for some α > 0:
Note that ∇f(x) = Qx + c and Hess(f) = Q, which is symmetric positive-

definite. So all its eigenvalues are strictly positive, ordering its eigenvalues as
λ1 ≥ λ2 ≥ · · · ≥ λN > 0. Now, for any v ̸= 0, we have

0 < λN ≤ vTQv

vT v
≤ λ1.

Choose α = 1
2λN > 0 such that for any v ̸= 0, we have

vT (Hess(f)− αIN ) v = vT (Q− αIN ) v

= vTQv − αvT v

≥ 1

2
λNvT v > 0.
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So, Hess(f)− 1
2λNIN is positive definite.

- ∇f is M-Lipschitz:
For any x, y ∈ K, note that

∥∇f(x)−∇f(y)∥ = ∥Q(x− y)∥
≤ ∥Q∥∥x− y∥.

By choosing M = ∥Q∥, then the condition holds.
- From the above, we require that

ρ ∈
(
0,

2α

M2

)
=

(
0,

λN

∥Q∥2

)
.

This problem satisfies the condition of the Projected Gradient Algorithm.

Q2

Define f(x) = 1
2∥x∥

2 = 1
2x

Tx and K := {x : Ax = b}. Now, it remains to check
the following conditions:

- f is strongly convex and coercive:
Note that f is clearly coercive since

lim
∥x∥→+∞

f(x) = +∞.

To show that f is strongly convex, we compute

∇f(x) = x, and Hess(f) = IN ,

which is positive definite, so f is strongly convex.
- Linear constraint:
It is clear that Ax = b is a linear constraint.
Thus, the problem satisfies the condition of the Uzawa Algorithm.
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