Solution 3

1. (1) For any $x, y \in \bigcap_{i \in I} X_i, \lambda \in [0, 1]$ Then $x, y \in X_i, \forall i \in I$. Since $X_i, i \in I$ are nonempty convex subsets. Then $\lambda x + (1 - \lambda)y \in X_i, \forall i \in I$ Thus, $\lambda x + (1 - \lambda)y \in \bigcap_{i \in I} X_i$ Hence, $\bigcap_{i \in I} X_i$ is convex. (2) For any $x, y \in \lambda_1 X_1 + \dots + \lambda_k X_k, \lambda \in [0, 1]$. There exists $x_i, y_i \in X_i, 1 \leq i \leq k$ such that

 $x = \lambda_1 x_1 + \dots + \lambda_k x_k, \quad y = \lambda_1 y_1 + \dots + \lambda_k y_k.$

Since $X_1, \ldots, X_k \subseteq \mathbb{R}^n$ are nonempty convex subsets. Then $x_i + (1 - \lambda)y_i \in X_i, \forall 1 \le i \le k$. Note that

$$\lambda x + (1 - \lambda)y = \lambda(\lambda_1 x_1 + \dots + \lambda_k x_k) + (1 - \lambda)(\lambda_1 y_1 + \dots + \lambda_k y_k)$$
$$= \lambda(\lambda_1(x_1 + (1 - \lambda)y_1) + \dots + \lambda_k(x_k + (1 - \lambda)y_k))$$

Since $x_i + (1-\lambda)y_i \in X_i, \forall 1 \le i \le k$. Then $\lambda x + (1-\lambda)y \in \lambda_1 X_1 + \dots + \lambda_k X_k$.

2. Suppose K is a convex set. Denote the interior and closure by K^* and \bar{K} .

(1) For any $x, y \in K^*$ and $\lambda \in [0, 1]$. There exists $r \in \mathbb{R}$ such that $B_r(x), B_r(y) \subseteq K$. Let r' < r. For any $z \in B_{r'}(x + (1 - \lambda)y)$, we have $\lambda z + (1 - \lambda)B_r(y)$. Thus, $||x + (1 - \lambda)y|| < r' < \lambda r$. Let $w = z - (\lambda x + (1 - \lambda)y)$. Then ||w|| < r'. Hence, $z = w + \lambda x + (1 - \lambda)y = \lambda(x + w) + (1 - \lambda)(y + w)$. Note that ||x + w - x|| = ||w|| < r, ||y + w - y|| = ||w|| < r. Then $x + w \in B_r(x)$ and $y + w \in B_r(y)$. Thus, $x + w \in K$ and $y + w \in K$. Since K is convex, then $\lambda(x + w) + (1 - \lambda)(y + w) \in K$. Thus, $z \in K$. Therefore, $B_{r'}(x + (1 - \lambda)y) \subseteq K$. Hence, $\lambda x + (1 - \lambda)y \in K^*$.

(2) For any $x, y \in \overline{K}$ and $\lambda \in [0, 1]$. Then there exists $\{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty} \subseteq K$ such that $x_n \to x, y_n \to y$. Since K is convex. Then $\lambda x_n + (1-\lambda)y_n \in K, \forall k = 1, 2, \ldots$ Note that $\lim_{n\to\infty} \lambda x_n + (1-\lambda)y_n = \lambda \lim_{n\to\infty} x_n + (1-\lambda) \lim_{n\to\infty} y_n = \lambda x + (1-\lambda)y$. Thus, $\lambda x + (1-\lambda)y \in \overline{K}$.

3.Let $T: V \to W$ be a linear transformation.

(1) Suppose V is a convex set and W = T(V). For any $x, y \in W$, $\lambda \in [0, 1]$. There exist $u, v \in V$ such that x = T(u), y = T(v). Note that $x + (1 - \lambda)y = \lambda T(u) + (1 - \lambda)T(v) = T(\lambda u) + T((1 - \lambda)v) =$ $T(\lambda u + (1 - \lambda)v)$. Since V is convex. Then $\lambda u + (1 - \lambda)v \in V$. Thus, $x + (1 - \lambda)y = T(\lambda u + (1 - \lambda)v) \in W$. Hence, W is convex. (2) Suppose W is convex. Consider the set $T^{-1}(W) = \{x \in V : T(x) \in W\}$. For any $u, v \in T^{-1}(W)$ and $\lambda \in [0, 1]$. Note that $T(u), T(v) \in W$. Since W is convex. Then $\lambda T(u) + (1 - \lambda)T(v) = T(\lambda u + (1 - \lambda)v) \in W$. Thus, $\lambda u + (1 - \lambda)v \in T^{-1}(W)$. Hence, $T^{-1}(W)$ is convex.