Solution 2

1. (1) Since A is symmetric, it can be orthogonally diagonalized. Let $\{u_1, u_2, \ldots, u_n\}$ be an orthonormal set of eigenvectors of A with corresponding eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$. For any unit vector $x \in \mathbb{R}^n$, express x as $x = \sum_{i=1}^n \alpha_i u_i$ where $\sum_{i=1}^n \alpha_i^2 = 1$. Then:

The minimum value of this expression occurs when all weight is assigned to the smallest eigenvalue λ_1 , i.e., $\alpha_1 = 1$ and $\alpha_i = 0$ for $i \ge 2$. Thus,

$$m = \lambda_1$$

which is the smallest eigenvalue of A.

(2) Extend $\{v_1, \ldots, v_k\}$ to an orthonormal eigenbasis $\{v_1, \ldots, v_n\}$ of A with eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$. The constraint $v_i^T x = 0$ for $i = 1, \dots, k$ restricts x to the subspace $S = \operatorname{span}\{v_{k+1}, \dots, v_n\}$. Any $x \in S$ with ||x|| = 1can be written as $x = \sum_{i=k+1}^n \beta_i v_i$ where $\sum_{i=k+1}^n \beta_i^2 = 1$. Then: The minimum is achieved when $\beta_{k+1} = 1$ and $\beta_i = 0$ for i > k+1, yielding

 $x = v_{k+1}$. Thus,

$$m = \lambda_{k+1}$$

which is an eigenvalue of A.

Remark: Both results follow from the Rayleigh-Ritz theorem and the Courant-Fischer minimax principle for symmetric matrices.

2. Recall the projection formula

$$x = y + \frac{-c^T y + d}{\|c\|}c$$

Necessary condition

$$x_i - y_i + \lambda c_i = 0$$
$$x_i = y_i - \lambda c_i$$

or

$$\sum c_i x_i = d$$

hence

$$d = \sum c_i y_i - \lambda \sum c_i^2$$

$$\lambda = \frac{c^T y - d}{\|c\|}$$

3. Qualification The constraints are linear, hence qualified at every point. **Necessary Condition**

(1)

$$\begin{cases} 2x - \lambda_1 - \lambda_2 &= 0\\ 2y - \lambda_1 - 2\lambda_2 + \lambda_3 &= 0\\ 4z - \lambda_2 + \lambda_3 &= 0 \end{cases}$$

Saturation

Case $y = z\lambda_3$

$$\begin{cases} 2x - \lambda_1 - \lambda_2 &= 0\\ 2y - \lambda_1 - 2\lambda_2 + \lambda_3 &= 0\\ \lambda_3 &= -\lambda_2 + 4z \end{cases}$$

We obtain the system

$$\begin{cases} 2x - \lambda_1 - \lambda_2 &= 0\\ 6y - \lambda_1 - 3\lambda_2 &= 0 \end{cases}$$

Case x + y = 1 λ_1

$$x = 1 - y$$

We find that the function to be minimized is

$$f = 1 - 2y + y^{2} + y^{2} + 2y^{2} = 4\left(y - \frac{1}{4}\right)^{2} + \frac{3}{4}$$

with the constraint $1+2y\geq 0$ We obtain a point that verifies the necessary condition at

$$x = \frac{3}{4}, y = \frac{1}{4}, z = \frac{1}{4}$$

Sub-case x + y > 1 $\lambda_1 = 0$ We obtain x = y = z We get $y > \frac{1}{2}$ Then $2y = \lambda_2 > 0$ hence 4y = 0impossible.

Case y < z $\lambda_3 = 0$

$$\begin{cases} 2x - \lambda_1 - \lambda_2 &= 0\\ 2y - \lambda_1 - 2\lambda_2 &= 0\\ 4z - \lambda_2 &= 0 \end{cases}$$

Sub-case x + y = 1 We then have $\lambda_1 = 1 - 6z$ and thus 2y = 1 + 2z impossible since y < z.

Sub-case x + y > 1 $\lambda_1 = 0$ x = 2z and y = 4z with z > 0 impossible since y < zConclusion Minimum of $\frac{3}{4}$ at $x = \frac{3}{4}$, $y = \frac{1}{4}$, $z = \frac{1}{4}$ (2) Necessary Condition

$$\begin{cases} 2x + \lambda_2 - \lambda_3 &= 0\\ 1 + \lambda_1 - \lambda_2 - \lambda_3 &= 0 \end{cases}$$

The first equation imposes $\lambda_2 > 0$ and thus x = y It is therefore a matter of minimizing $x^2 + x$ for $-\frac{3}{2} \le x \le 0$ minimum at $x = y = -\frac{1}{2}$ and equals $-\frac{1}{4}$

4.

(1) The function is coercive and the constraint is closed.

(2)

$$g_1 = 2x - y^2 - 1, \quad g_2 = -x$$
$$\nabla g_1 = \begin{pmatrix} 2\\ -2y \end{pmatrix}, \quad \nabla g_2 = \begin{pmatrix} -1\\ 0 \end{pmatrix}$$

If $I = \{1\}$ or $\{2\}$ We have $\nabla g_1 \neq 0$ and $\nabla g_2 \neq 0$ hence we have qualification in these two cases.

The case $I = \{1, 2\}$ is impossible, we thus have qualification at every point.

(3)

$$\begin{cases} 0 = 2(x-2) - \lambda_1 + 2\lambda_2 \\ 0 = 2y - 2y\lambda_2 \end{cases}$$

(4) We obtain $\lambda_2 = 1$ or y = 0

Case y = 0 Then $2x \ge 1$ hence x - 2 < 0 and thus $\lambda_2 > 0$ We thus obtain x = 1/2

Case $\lambda_2 = 1$ Then $2x - y^2 = 1$ We thus have x > 0 and thus $\lambda_1 = 0$ We then obtain x = 1 and thus $y = \pm 1$

(5) The minimum is thus 2 at $(1, \pm 1)$