Math 4210 Assignment 3

Due time: November 28th, 2024, 23:59

Question 1

1. Let f(t, x) := tx for all $(t, x) \in \mathbb{R}_+ \times \mathbb{R}$, apply Itô's formula on $f(t, B_t)$ to prove that

$$tB_t = \int_0^t s \ dB_s + \int_0^t B_s \ ds.$$

2. Deduce from above result that

$$\int_0^t B_s \ ds = \int_0^t (t-s) \ dB_s.$$

3. Compute

$$\mathbb{E}\left[\int_0^t B_s \ ds\right]$$
 and $\operatorname{Var}\left[\int_0^t B_s \ ds\right]$.

Question 2

We consider a continuous time market, where the interest rate $r \ge 0$, and the risky asset $S = (S_t)_{0 \le t \le T}$ follows the Black-Scholes model with initial value $S_0 = 1$, drift μ and volatility $\sigma > 0$ (without any dividend), so that

$$S_t = S_0 \exp((\mu - \sigma^2/2)t + \sigma B_t), \ t \ge 0$$

a) A self-financing portfolio is given by (x, ϕ) , where x represents the initial wealth of the portfolio, and ϕ_t represents the number of risky asset in the portfolio at time t. Let $(\Pi_t^{x,\phi})_{t\in[0,T]}$ be the wealth process of the portfolio, write down the dynamic of $\Pi^{x,\phi}$ in form of

$$d\Pi_t^{x,\phi} = \alpha_t dt + \beta dB_t$$
, for some (to be found) process (α,β) .

b) There exists a unique risky-neutral probability \mathbb{Q} , together with a Brownian motion $B^{\mathbb{Q}}$ under the probability measure \mathbb{Q} .

Please give the expression of the process S_t as a function of $(t, B_t^{\mathbb{Q}})$.

- c) We first consider an option with payoff $g(S_T) = S_T^3$ at maturity T.
 - Compute the value

$$V_0 := \mathbb{E}^{\mathbb{Q}} \left[e^{-rT} S_T^3 \right].$$

- Let $v(t, x) := x^3 \exp\left((2r + 3\sigma^2)(T - t)\right)$, compute $\partial_t v$, $\partial_x v$ and $\partial_{xx}^2 v$, and then check that v satisfies the equation

$$\partial_t v(t,x) + rx \partial_x v(t,x) + \frac{1}{2} \sigma^2 x^2 \partial_{xx}^2 v(t,x) - rv(t,x) = 0, \quad v(T,x) = x^3.$$

- Let $\tilde{S}_t := e^{-rt}S_t$ for all $t \ge 0$. Notice that both S_t and \tilde{S}_t are functions of (t, B_t) , apply the Itô formula on $e^{-rt}v(t, S_t)$ to deduce a process $(\phi_t)_{t\in[0,T]}$ such that

$$e^{-rT}S_T^3 = V_0 + \int_0^T \phi_t d\tilde{S}_t.$$

Deduce that V_0 is the (no-arbitrage) price of the option $g(S_T) = S_T^3$.

Question 3

Let us consider the European call and put option with the same underlying asset $S = (S_t)_{0 \le t \le T}$ and the same strike price K > 0, maturity time T > 0. Their prices at initial time t = 0 are denoted by respectively $C_E(0, K)$ and $P_E(0, K)$. Assume that, for each unit of underlying asset, a dividend with amount D dollars will be issued at time $\tau_D \in (0, T)$. Prove that

$$C_E(0,K) - P_E(0,K) = S_0 - Ke^{-rT} - De^{-r\tau_D}$$

Question 4

We observe the prices (at time t = 0) of the following European call/put options on the market. Suppose that the interest rate r = 0, and the initial price of the underlying stock is $S_0 = 100$. Please construct a portfolio, using these options together with the cash (bank account), to find an arbitrage opportunity.

Option Type	Strike	Maturity	Option Price at time $t = 0$
Put	90	2	6
Call	100	1	11
Put	110	2	14

Question 5

Let us consider two different investments, whose cash flow of each year is given as follows:

Year	0	1	2	3
Investment 1	-1000	200	500	600
Investment 2	-1000	600	500	200

Table 1: Cash flow of two investments

Assume that the (annuel) discrete compounding interest rate r = 1%. Please write down the formula to compute the NPV, and then compare the two investments in terms of the NPV.