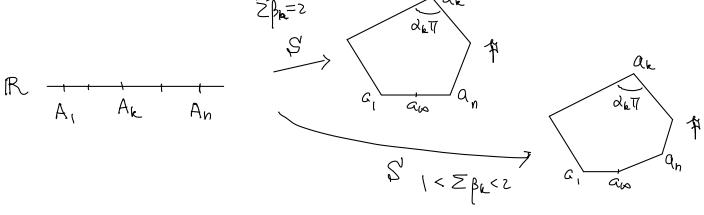
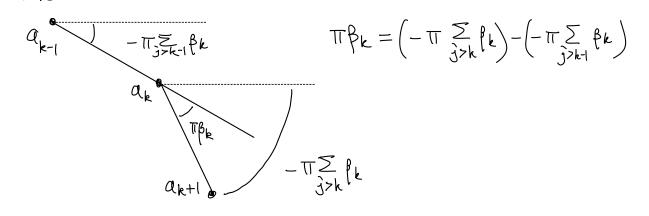
Prop 4.1 Suppose
$$S(z)$$
 is given by (5) is the above definition
and $a_1, \dots, a_n \ge a_{\infty}$ are as in the verwarks it is z (iv).
(i) If
 $\sum_{k=1}^{n} \beta_k = 2$, and
 $\sum_{k=1}^{n} \beta_k = 2$, and $\sum_{k=1}^{n} \beta_k$.
(i) If $1 < \sum_{k=1}^{n} \beta_k < 2$, the similar conclusion holds with
 $\sum_{k=1}^{n} \beta_k < 2$, the similar conclusion holds with
 $\sum_{k=1}^{n} \beta_k < 2$, the similar conclusion holds with
 $\sum_{k=1}^{n} \beta_k < 2$, the similar $\sum_{k=1}^{n} \beta_k$.
 $\sum_{k=1}^{n} \beta_k = 2 - \sum_{k=1}^{n} \beta_k$.
 $\sum_{k=1}^{n} \beta_k = 2 - \sum_{k=1}^{n} \beta_k$.

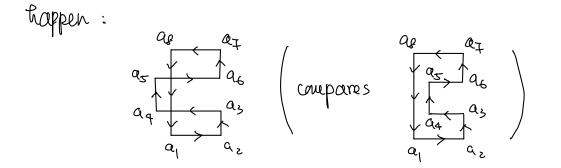


And • S(X) varies from
$$a_n = S(An)$$
 to $a_{\infty} = S(A_{\infty})$
as X varies from An to ∞ .
• S(X) vories from a_{∞} to $a_1 = S(A_1)$
as X varies from $-\infty$ to A_1
This shows that $a_{\infty} \in [a_1, a_n]$ (augles with x-axis)
 $=0 \ 2 - 2 \ 1$
This proves $S(\mathbb{R}) = \# \{a_{\infty}\}$.
Note that



Therefor angle at
$$Q_k = T - (\pi \beta_k) = d_k T$$
.
Case (ii) $1 < \sum_{k=1}^{N} \beta_k < 2$ is similar (Ex!)

Notes: (i) For an arbitrary choice of n, A1,..., An, B1,..., Bn, the "polygon" If in Prop f. | may not be <u>simple</u>. The following could



(ii) Even $\mathcal{P} = \partial \mathcal{P}$, Painply-connected region, Propf. I have t shown that $S = |H \rightarrow \mathcal{P}|$ is conformal. (See subsection 4.4 kelow)