Prop 3.5 let
$$\cdot \Omega \subset \Omega$$
 be a region, R
 $\cdot \{f_n\}, f$ be holo functions on SZ such that
 $\cdot f_n \rightarrow f$ uniformly on energy compact subset of SZ
If fn and injective, then
 f is either injective a constant.
Bf: Suppose that f is not injective.
Then $\exists z_1, z_2 \in \Omega$ such that
 $z_1 \neq z_2$ but $f(z_1) = f(z_2)$.
Define $g_n(z_2) = 0$ is
 $(g_n(z_2) \neq 0, \forall z \in \Omega \setminus \{z_1\}, \forall z_2 \in \Omega \setminus \{z_1\}, \forall z_3 \in \Omega \setminus \{z_1\}, \forall z_4 \in \Omega \setminus \{z_4\}, \forall z_4 \in \Omega$

Then
$$\frac{1}{3n} \Rightarrow \frac{1}{3}$$
 while $13 - z_{2} = \varepsilon$
and there $\frac{1}{2\pi c} \int \frac{g'(s)}{S_{1}(s)} ds \rightarrow \frac{1}{2\pi c} \int \frac{g'(s)}{g(s)} ds \ge 1$
 $1s - z_{2} = \varepsilon$
This is a contradiction as g_{n} thas no zero in $1s - z_{2} \le \varepsilon$
 $\Rightarrow \frac{1}{2\pi c} \int \frac{g'(s)}{g_{n}(s)} ds = 0$, $\forall n$,
 $\cdot \cdot g \equiv 0 \Rightarrow f(z) = f(z_{1}) = a$ constant $\forall z \in \Omega$.

Remarke: The congument in the proof of Prop3.5 gives the following
Hurwitz Theorem:
If $f_{n} \ge f$ analytic in Ω , $f_{n}(z) = 0$, $\forall z \in \Omega$, and
 f_{n} converges miniformly to f on every compact set of Ω ,
then either (i) $f(z) \equiv 0$, $a = 0$

And clearly Hurwitz Thre => Prop3.5.

Step 1 For a proper and simply-connected region
$$\Omega$$
,
and $z_0 \in \Omega$, $\exists conformal$
 $f = \Omega \rightarrow \underline{f(\Omega)} \subset D$ st. $\underline{f(z_0) = 0} \approx \underline{f'(z_0) > 0}$

Then
$$h(z) = \frac{r}{g(z) - (g(w) + z\pi i)}$$
 is the injective

and $(f_{1}(z)) = \frac{1}{|q(z) - (q(w) + 2\pi i)|} < \frac{r}{r} = 1$ $\therefore \quad h: \mathcal{J} \to h(\mathcal{I}) \subset \mathbb{D} \quad \text{canfaneal}$ Finally, $f(z) = e^{i\theta} \frac{h(z) - h(z)}{1 - \overline{h(z_0)}} = e^{i\theta} \Psi_{h(z_0)} \circ h(z)$ (where the as in subsection 2.1 2 DER to be chosen) is holo. injective, f(si) CD, and f(zo)=0. Furthermore $f(z_0) = e^{i\theta} \Psi_{g(z_0)}(f_{z_0}) f_{z_0}(z_0)$. $\theta = - \arg \left(\Upsilon_{\mathfrak{g}(z_0)}^{\prime}(\mathfrak{g}(z_0)) \mathfrak{g}^{\prime}(z_0) \right) \right)$ Hence ief Hen 5'(20)>0, X