Lemma 5.5 Suppose
$$g$$
 is entire, if $\exists seg. \{r_{m}s, r_{m} \rightarrow too st.$
 $reg(z) \leq Cr_{m}^{s}$ for $|z|=r_{m}$, $\forall m \geq 1$.
Then g is a polynomial of degree $\leq s$.

Pf: 9 entire ⇒
$$g(z) = \sum_{n=0}^{\infty} b_n z^n$$
, $\forall z \in \mathbb{C}$
By Cauchy integral famula (Fourier coefficients),

we have
$$\frac{1}{2\pi}\int_{0}^{2\pi}g(re^{i\theta})e^{-in\theta}d\theta = \begin{cases} b_{n}r^{n}, n \ge 0\\ 0, n < 0 \end{cases}$$

$$\Rightarrow F_{n} (n>0), \quad \frac{1}{2\pi} \int_{0}^{2\pi} \overline{g(re^{i\theta})} e^{-in\theta} d\theta = 0$$

Hence $\frac{1}{2\pi} \int_{0}^{2\pi} (g+\overline{g}) (re^{i\theta}) e^{-in\theta} d\theta = b_{n} r^{n}$, n > 0

i.e.
$$\int_{0}^{2\pi} [\text{Reg}(re^{i\theta})] \cdot e^{-in\theta} d\theta = \pi b_n r^n$$
 $\forall n > 0$

$$F \sim n = 0$$
, $\int_{-\infty}^{2\pi} Reg(re^{i\Theta}) d\Theta = 2\pi Re(bo)$.

Note that
$$\int_{0}^{2\pi} e^{-in\theta} d\theta = 0$$
, $\forall n > 0$,

we have $b_{N} = \frac{1}{\pi r^{n}} \int_{b}^{2\pi} [Reg(re^{i\theta}) - Cr^{s}] e^{-in\theta} d\theta$

$$\Rightarrow far r = rm,$$

$$|b_n| \leq \frac{1}{\pi r_m} \int_0^{2\pi} [Cr_m^s - Reg(r_m e^{i\alpha})] d\alpha$$

$$= \frac{2C}{r_m^{n-s}} - \frac{2Re(bo)}{r_m^n} \longrightarrow 0 \quad \text{as } r_m \Rightarrow t \text{ is } if n > s$$

$$\therefore \quad g = poly. \quad of \quad degree \leq S. \quad \text{if } if n = if n$$

Pf of Hadamard's Thenew Let $E(z) = z^{m} \prod_{n=1}^{\infty} E_{k}(\frac{z}{\alpha_{n}})$ Lemma 4.2 => $\left(\left|-E_{k}\left(\frac{z}{a_{h}}\right)\right| \leq C\left(\frac{z}{a_{h}}\right)^{k+1}$ for some c The Z.I =) $\sum_{n=1}^{\infty} \frac{1}{|a_n|^{k+1}} < +\infty$ since $k+1>\beta_{-1}$ we have $\sum_{n=1}^{\infty} |I - E_k(\overline{a_n})| \le C |z|^{k+1}$ C>0 indep. of z. Hence the infinite product converges uniformly on {1=1<R\$, VR>0, this implies E(Z) is a well-defined entire function. Since E(Z) has the same zeros as f(Z), $\frac{f(z)}{F(z)}$ is holomorphic and nowhere nanishing $\frac{f(z)}{F(z)} = e^{f(z)} \quad \text{for some entire } f(z)$ =)

By Cor5.4. f_{α} $|z| = r_{m}$, $e^{\operatorname{Re} g(z)} = \left|\frac{f(z)}{E(z)}\right| \leq \frac{A e^{B|z|^{S}}}{e^{-C|z|^{S}}} \quad \forall S > \beta_{f}$ $= A e^{(BrC)|z|^{S}}$ $\Rightarrow \forall |z| = r_{m}$, $\operatorname{Re} g(z) \leq C |z|^{S}$. (diff. C.) By Lemma 5.5, $g(z) = \operatorname{polynomial} of \operatorname{degree} \leq S$. $\Rightarrow \qquad g(z) = \operatorname{polynomial} of \operatorname{degree} \leq K$.

Def: For S>0, the gamma function is defined by

$$\Gamma(S) = \int_{0}^{\infty} e^{-t} t^{S-1} dt$$
. (1)

<u>Remark</u>: By definition, $\int_{0}^{\infty} e^{\pm} t^{s-1} dt = \lim_{\varepsilon \to 0} \int_{\varepsilon}^{\varepsilon} e^{\pm} t^{s-1} dt$ (learly $\Gamma(s)$ is well-defined for s > 0: $\int_{\varepsilon}^{1} t^{s-1} dt = \frac{t^{s}}{s} \Big|_{\varepsilon}^{1} \rightarrow \frac{1}{s} \text{ as } \varepsilon \Rightarrow 0.$ (and e^{-t} bdd near $t=0 \varepsilon$ rapidly clean as $t \Rightarrow +\infty$) <u>Propl. 1</u> The formula $\Gamma(s) = \int_{0}^{\infty} e^{\pm} t^{s-1} dt$ extends the

domain of definition of
$$T^{\prime}(s)$$
 to the open half-plane $f(s) \in \mathbb{C}$: $Re(s) > 0's$.

PS: It suffices to show that (1) defines a holomorphic function in $S_{\overline{5}M} = \{8 < \text{Re}(5) < M\}, \forall 0 < \overline{5} < M < \infty$.

Note that $t = e^{(s-1)\log t}$ is holomorphic in $s \in C$ and hence et t^{s-1} is holo. in s, and continuous \dot{M} $(t,s) \in [e, t] \times [\delta, M]$ Hence Thm 5.4 of Chz => $\forall \epsilon > 0$, $F_{\epsilon}(s) = \int_{\epsilon}^{t} e^{-t} t^{s-1} dt$ is hold, on $S_{\xi,M}$. Note also that 5< Re(s) < M $\Rightarrow |e^{-t}t^{s-1}| = e^{-t}|e^{(s-1)\log t}| = e^{-t}e^{(\Re(s)-1)\log t}$ $= \rho^{-\frac{1}{2}} t^{Re(s)-1}$ $(far \epsilon < 1) = \int_{a}^{b} |e^{-t}t^{s-1}| dt = \int_{a}^{b} e^{-t}t^{R(s)-1} dt$ $\in \left(e^{-t} t^{\delta} dt \leq \frac{\varepsilon^{\delta}}{2} \right)$.: So et to convergent. (as inproper integral non o) Similarly $\int_{\underline{t}}^{\infty} |e^{-t}t^{s-1}| dt \leq \int_{\underline{t}}^{\infty} e^{-t}t^{M-1} dt$ < C Si e t (for some C>0) ≤ ZC p⁻≥

$$\begin{array}{rcl} & & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$