Math4030 Differential Geometry October 2024

Solutions 3

(3.1) Given a smooth function f : R? — R, for each 6 € R, consider the curve
~o : R — Graph(f), defined by

~o(t) = (tcosf,tsinb, f(tcosf,tsinh)), VieR.

Recall from lectures that the first fundamental form with respect to the coordinates
X : R? — Graph(f), X (u1,u2) = (uy,us, f(u1,us)), is given by

<1+f12 f1f2>
fife 1+f3)°

a) For each 6 € R, show that the length of the curve restricted to the interval [—1, 1]
is given by

1
Lolioa) = [ VIT (Freosd + Fasimdr,
—1

b) In the case f(z,y) = 22 — y2, find the values of # which minimise the length
L(vol(-1,1))-

¢) In the case f(z,y) = e*¥, find the values of 6 which minimise the length
L(vol(-1,1))-
Solution (3.1)

a) Plugging everything into the equation for length we have

1
L(vlo1) = / V(L £2) cos? 0+ (1 + f2)? sin® 6 + 21 fo sin 6 cos Gt
—1

1
= / V1 + (ficosf + fasin)2dt.
-1
b) Since f; = 2t cos 6, fo = 2tsin 6, the formula from a) becomes
1
L(veli—1,1)) = / 1+ 4¢2 cos?(20)dt,
-1

and so the length is minimal when cos 20 = 0, which happens iff = 7/4+ k7w /2
for some k € Z.

¢) Since f1 = ftcosf, fo = ftsin6, the formula from a) becomes

1
L(vel(-1,1)) = /1 \/1 + f2t2sin?(26)dt.

Since f is always positive, the length is minimised when sin 260 = 0, which
happens iff = km /2 for some k € Z.
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(3.2) Let X : R? — S?\ {N} denote the stereographic coordinates

X(uwo) o=

2u 2v w+02 -1
w22+ w2402+ 1" w2 +02+1

For each r > 0, let
Q. =X ({(u, v) €R? 1 VU2 402 < 7‘}) C S$2

That is, €2, is the image under stereographic coordinates of the the closed disk of radius
r centred at the origin in the plane.

a) Calculate the area of the region 2,.

b) Find a sequence of numbers 7,, 1 co such that the ratio of the area of €2, to the
area of its complement S? \ . isexactly n : 1.

Tn

Solution (3.2)

a) It was shown in tutorials that the first fundamental form in these coordinates is

4
— <(1+u2+v2)2 0 )
g = 0 4 )
(T+u2+o2)?

/ 4
dA = det g‘(uyv)dud’v = mdudv

Switching to polar coordinates (p, 8), we find that

4
dA = —————dud
A /2+7j2<r2 1+u?+ 2)2 uav
27
dpdf
//1+p g

B (=)

b) Either by taking 1 co or otherwise, we have know that the area of S? is 4.
Thus, r,, must satisfy

ar(1- 1 :/ dA=ar (") an(1- 1),
1412 Q. n+1 1+n

and so r,, = /n.

and so

(3.3) Prove that any surface of revolution is an orientable surface.
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Solution (3.3) Suppose S is a surface of revolution given rotating v : R — R2, a
closed curve of length L, about the z-axis. If v(s) = (f(s),y(s)), then, as in the lecture
notes, we can cover .S by three charts X, Y, Z : (0, L) x (0,27) — S,

X(s,0) = (f(s)cosb,y(s), f(s)sinh),
Y(s,0) =X(s+L/3,0+1/2)
Z(s,0) = X(s+2L/3,0+ ).
On overlaps, the change of coordinate function is always given by
h(s,0) = (s + 10 + ¢2),

for a pair of constants c1, co € R, which has Jacobian matrix /5. Therefore, these charts
define the same orientation on every tangent space of S, and S is orientable.

(3.4) Let S be aregular surface. Given a collection of charts {X . U; —» S }ier over
some index I, we say that they form an atlas on S if they cover S

Uxiw) =s.
iel
We say an atlas {X® : U; — S}ies is orientable if the charts define a unique
orientation on every tangent space of S. Therefore, S is orientable if and only if S
admits an orientable atlas.
We consider the collection of all orientable atlases on our surface S
A= {a={X":U; — S}ics : ais an orientable atlas on S}.

Given two orientable atlases a,, a, € A, their union a, U a, is also an atlas on S. We
define the relation a, ~ a, if a, Ua, € A, i.e. their union is also an orientable atlas.

a) Show that ~ given above is a well-defined equivalence relation on A. In particular,
we can then define the space of orientations on S to be the quotient space

Or(S)=A/~.
We now consider the space of smooth unit normal vector fields
N :={N:S— R®: Nisasmooth with | N,|| =1, N, L T,,S, ¥p € S}.
In the lectures (Lemma 3.17) we showed that Or(S) # 0 < N # (.

b) Find a bijection between the sets Or(S) and NV.
c¢) Consider the hyperboloid
H:={(v,y,2) €R3: —2® —y® + 2% = 1}.
It was shown in lectures that H is a regular surface.

How many distinct orientations does H have? That is, what is the cardinality of
the set Or(H)? Justify your answer.
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Solution (3.4)

a)

b)

c)

Sincea=aUa€ A, a~a. SinceaUb=bUa,a~ biff b ~ a. Finally,
suppose a,b, ¢ € A witha ~ band b ~ ¢. Fix p € S. Then there exists a chart
X : U — Sin b about p. By the assumed relations, for any charts in both a and ,
the orientations they define on 7,5 must be the one defined by X, and hence all
charts in a U ¢ define the same orientation on 7,,S. As p was arbitrary, a U ¢ € A,
and hence a ~ c.

Given an oriented atlas a € A, Lemma 3.17 from the lecture notes produces a
well-defined N € N. Consider this proceedure as a function F' : A — N.

Note that, in Lemma 3.17, we showed that such a map is surjective: any element
of N comes from an oriented atlas.

Finally, we see that for two elements a, b € A, F(a) = F(b) if and only if, for
any chart X : U — Sinaandanychart Y : V — Sin b, NX = NY on the
overlap X (U) NY (V'), which happens if and only if a U b € A, or a ~ b.

Therefore, F' descends to a well-defined bijection F' : Or(S) — N,

F([a]) := F(a), VYaec A

We first show the claim that, if S is a connected regular orientable surface, there
exists exactly two orientations on S.

Proof of Claim. Since S is orientable, there exists [V €~J\/ . Note that, —N € N
also. Given any other normal N' € N, we note that N - N : § — {£1} is smooth.

Since N is connected, N - N is constant, and thus either N = N or N = —N.
Thatis, N' = {£N}. O

Since H = f~!(1), where f : R® — R is the smooth function

2 2 2
f(a:yy?z)zz - =Y,
H is an orientable regular surface. However H is not connected, as we can

decompose H = HT LI H~, where
H" ={(z,y,2) € H:2>0}, H ={(z,y,2) € H:z<0}.

It is clear H* are non-empty, and each are open in H since H* = H N {z > 0},
H-=Hn{z<0}.

However, each of H* are connected. To see this, we simply note that the
projection map from each of them to the {z = 0} plane is a diffeomorphism, and
R? is connected.

Therefore, each of HE has two orientations. Let =N denote the two possible
global unit normal vector fields and H™, and similarly =N~ on H~. Given
any global unit normal vector field N on H, its restriction to each connected
component is still a unit normal vector field, and so it must be either
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e equal to N™ on H* and equal to N~ on H™;

» equalto —N ' on H* and equal to N~ on H™;
e equalto NT on HT and equal to — N~ on H~;
e equalto —N* on H and equal to —N~ on H™.

It follows that H admits exactly four orientations.



