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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(3.1) Given a smooth function f : R2 → R, for each θ ∈ R, consider the curve
γθ : R → Graph(f), defined by

γθ(t) = (t cos θ, t sin θ, f(t cos θ, t sin θ)), ∀t ∈ R.

Recall from lectures that the first fundamental form with respect to the coordinates
X : R2 → Graph(f), X(u1, u2) = (u1, u2, f(u1, u2)), is given by

g =

(
1 + f2

1 f1f2
f1f2 1 + f2

2

)
.

a) For each θ ∈ R, show that the length of the curve restricted to the interval [−1, 1]
is given by

L(γθ|[−1,1]) =

∫ 1

−1

√
1 + (f1 cos θ + f2 sin θ)2dt.

b) In the case f(x, y) = x2 − y2, find the values of θ which minimise the length
L(γθ|[−1,1]).

c) In the case f(x, y) = exy, find the values of θ which minimise the length
L(γθ|[−1,1]).

Solution (3.1)

a) Plugging everything into the equation for length we have

L(γθ|[−1,1]) =

∫ 1

−1

√
(1 + f2

1 ) cos
2 θ + (1 + f2)2 sin

2 θ + 2f1f2 sin θ cos θdt

=

∫ 1

−1

√
1 + (f1 cos θ + f2 sin θ)2dt.

b) Since f1 = 2t cos θ, f2 = 2t sin θ, the formula from a) becomes

L(γθ|[−1,1]) =

∫ 1

−1

√
1 + 4t2 cos2(2θ)dt,

and so the length is minimal when cos 2θ = 0, which happens iff θ = π/4+kπ/2
for some k ∈ Z.

c) Since f1 = ft cos θ, f2 = ft sin θ, the formula from a) becomes

L(γθ|[−1,1]) =

∫ 1

−1

√
1 + f2t2 sin2(2θ)dt.

Since f is always positive, the length is minimised when sin 2θ = 0, which
happens iff θ = kπ/2 for some k ∈ Z.

1



Math4030 Differential Geometry October 2024

(3.2) Let X : R2 → S2 \ {N} denote the stereographic coordinates

X(u, v) :=

(
2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1

)
.

For each r > 0, let

Ωr := X
(
{(u, v) ∈ R2 :

√
u2 + v2 ≤ r}

)
⊆ S2.

That is, Ωr is the image under stereographic coordinates of the the closed disk of radius
r centred at the origin in the plane.

a) Calculate the area of the region Ωr.

b) Find a sequence of numbers rn ↑ ∞ such that the ratio of the area of Ωrn to the
area of its complement S2 \ Ωrn is exactly n : 1.

Solution (3.2)

a) It was shown in tutorials that the first fundamental form in these coordinates is

g =

(
4

(1+u2+v2)2 0

0 4
(1+u2+v2)2

)
,

and so
dA =

√
det g|(u,v)dudv =

4

(1 + u2 + v2)2
dudv.

Switching to polar coordinates (ρ, θ), we find that∫
Ωr

dA =

∫
u2+v2≤r2

4

(1 + u2 + v2)2
dudv

=

∫ 2π

0

∫ r

0

4ρ

(1 + ρ2)2
dρdθ

= 2π

(
−2

(1 + ρ2)

∣∣∣∣r
0

= 4π

(
1− 1

1 + r2

)
.

b) Either by taking r ↑ ∞ or otherwise, we have know that the area of S2 is 4π.
Thus, rn must satisfy

4π

(
1− 1

1 + r2n

)
=

∫
Ωrn

dA = 4π

(
n

n+ 1

)
= 4π

(
1− 1

1 + n

)
,

and so rn =
√
n.

(3.3) Prove that any surface of revolution is an orientable surface.
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Solution (3.3) Suppose S is a surface of revolution given rotating γ : R → R2, a
closed curve of length L, about the z-axis. If γ(s) = (f(s), y(s)), then, as in the lecture
notes, we can cover S by three charts X,Y, Z : (0, L)× (0, 2π) → S,

X(s, θ) = (f(s) cos θ, y(s), f(s) sin θ) ,

Y (s, θ) = X(s+ L/3, θ + π/2)

Z(s, θ) = X(s+ 2L/3, θ + π).

On overlaps, the change of coordinate function is always given by

h(s, θ) = (s+ c1θ + c2),

for a pair of constants c1, c2 ∈ R, which has Jacobian matrix I2. Therefore, these charts
define the same orientation on every tangent space of S, and S is orientable.

(3.4) Let S be a regular surface. Given a collection of charts {Xi : Ui → S}i∈I over
some index I , we say that they form an atlas on S if they cover S⋃

i∈I

Xi(Ui) = S.

We say an atlas {Xi : Ui → S}i∈I is orientable if the charts define a unique
orientation on every tangent space of S. Therefore, S is orientable if and only if S
admits an orientable atlas.

We consider the collection of all orientable atlases on our surface S

A = {a = {Xi : Ui → S}i∈I : a is an orientable atlas on S}.

Given two orientable atlases a1, a2 ∈ A, their union a1 ∪ a2 is also an atlas on S. We
define the relation a1 ∼ a2 if a1 ∪ a2 ∈ A, i.e. their union is also an orientable atlas.

a) Show that ∼ given above is a well-defined equivalence relation on A. In particular,
we can then define the space of orientations on S to be the quotient space

Or(S) = A/ ∼ .

We now consider the space of smooth unit normal vector fields

N := {N : S → R3 : N is a smooth with ∥Np∥ = 1, Np ⊥ TpS, ∀p ∈ S}.

In the lectures (Lemma 3.17) we showed that Or(S) ̸= ∅ ⇐⇒ N ≠ ∅.

b) Find a bijection between the sets Or(S) and N .

c) Consider the hyperboloid

H := {(x, y, z) ∈ R3 : −x2 − y2 + z2 = 1}.

It was shown in lectures that H is a regular surface.

How many distinct orientations does H have? That is, what is the cardinality of
the set Or(H)? Justify your answer.
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Solution (3.4)

a) Since a = a ∪ a ∈ A, a ∼ a. Since a ∪ b = b ∪ a, a ∼ b iff b ∼ a. Finally,
suppose a, b, c ∈ A with a ∼ b and b ∼ c. Fix p ∈ S. Then there exists a chart
X : U → S in b about p. By the assumed relations, for any charts in both a and c,
the orientations they define on TpS must be the one defined by X , and hence all
charts in a ∪ c define the same orientation on TpS. As p was arbitrary, a ∪ c ∈ A,
and hence a ∼ c.

b) Given an oriented atlas a ∈ A, Lemma 3.17 from the lecture notes produces a
well-defined N ∈ N . Consider this proceedure as a function F : A → N .

Note that, in Lemma 3.17, we showed that such a map is surjective: any element
of N comes from an oriented atlas.

Finally, we see that for two elements a, b ∈ A, F (a) = F (b) if and only if, for
any chart X : U → S in a and any chart Y : V → S in b, NX = NY on the
overlap X(U) ∩ Y (V ), which happens if and only if a ∪ b ∈ A, or a ∼ b.

Therefore, F descends to a well-defined bijection F̃ : Or(S) → N ,

F̃ ([a]) := F (a), ∀a ∈ A.

c) We first show the claim that, if S is a connected regular orientable surface, there
exists exactly two orientations on S.

Proof of Claim. Since S is orientable, there exists N ∈ N . Note that, −N ∈ N
also. Given any other normal Ñ ∈ N , we note that N · Ñ : S → {±1} is smooth.
Since Ñ is connected, N · Ñ is constant, and thus either Ñ = N or Ñ = −N .
That is, N = {±N}.

Since H = f−1(1), where f : R3 → R is the smooth function

f(x, y, z) = z2 − x2 − y2,

H is an orientable regular surface. However H is not connected, as we can
decompose H = H+ ⊔H−, where

H+ = {(x, y, z) ∈ H : z > 0}, H− = {(x, y, z) ∈ H : z < 0}.

It is clear H± are non-empty, and each are open in H since H+ = H ∩ {z > 0},
H− = H ∩ {z < 0}.

However, each of H± are connected. To see this, we simply note that the
projection map from each of them to the {z = 0} plane is a diffeomorphism, and
R2 is connected.

Therefore, each of H± has two orientations. Let ±N+ denote the two possible
global unit normal vector fields and H+, and similarly ±N− on H−. Given
any global unit normal vector field N on H , its restriction to each connected
component is still a unit normal vector field, and so it must be either
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• equal to N+ on H+ and equal to N− on H−;

• equal to −N+ on H+ and equal to N− on H−;

• equal to N+ on H+ and equal to −N− on H−;

• equal to −N+ on H+ and equal to −N− on H−.

It follows that H admits exactly four orientations.
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