
Math4030 Differential Geometry November 2024

Solutions 5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(5.1) Suppose S ⊆ R3 is a regular surface and X : U → S are isothermal coordinates
with

[g]X =

(
e2f 0
0 e2f

)
,

for some smooth function f : U → R.

a) Show that the Christoffel symbols are given by the formula

Γk
ij = fiδjk + fjδik − fkδij .

b) Show that, for a curve γ(t) = X(u1(t), u2(t)) inside of S, that the parallel
transport equations for a smooth vector field W = w1(t)X1(t) + w2(t)X2(t)
along γ are the system of equations(

w′
1(t)

w′
2(t)

)
+

(
f1u

′
1(t) + f2u

′
2(t) f2u

′
1(t)− f1u

′
2(t)

f1u
′
2(t)− f2u

′
1(t) f1u

′
1(t) + f2u

′
2(t)

)(
w1(t)
w2(t)

)
= 0

c) Show that the Gaussian curvature is given by the formula

K = −e−2f∆f.

Solution (5.1)

a) Since gij = e2fδij and gij = e−2fδij , the intrinsic formula for the Christoffel
symbols becomes

Γk
ij =

1

2
gkl (∂igjl + ∂jgil − ∂lgij)

=
1

2
e−2f (∂igjk + ∂jgik − ∂kgij)

=
1

2
e−2f

(
∂i(e

2f )δjk + ∂j(e
2f )δik − ∂k(e

2f )δij
)

= fiδjk + fjδik − fkδij .

b) The local system of equations for parallel transport can be written in matrix form
as(

w′
1(t)

w′
2(t)

)
+

(
Γ1
11u

′
1(t) + Γ1

12u
′
2(t) Γ1

21u
′
1(t) + Γ1

22u
′
2(t)

Γ2
11u

′
1(t) + Γ2

12u
′
2(t) Γ2

21u
′
1(t) + Γ2

22u
′
2(t)

)(
w1(t)
w2(t)

)
= 0

Note that
Γ1
11 = f1, Γ1

12 = Γ1
21 = f2, Γ1

22 = −f1,

Γ2
11 = −f2, Γ2

12 = Γ2
21 = f1, Γ2

22 = f2,

which substituting into the above gives the desired result.
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c) Using the intrinsic formula for the Gaussian curvature we have

K =
1

2
gij
(
∂kΓ

k
ij − ∂jΓ

k
ik + Γq

ijΓ
k
kq − Γq

ikΓ
k
jq

)
=

1

2
e−2f

(
∂kΓ

k
ii − ∂iΓ

k
ik + Γq

iiΓ
k
kq − Γq

iiΓ
k
iq

)
.

Note that

∂kΓ
k
ii = ∂k(2fiδik − fk) = ∂k(fk − fk) = 0,

Γq
iiΓ

q
kq = (2fiδiq − fq)fq = (fq − fq)fq = 0,

Γq
ikΓ

k
iq = (fiδkq + fkδiq − fqδik)(fiδkq − fkδiq + fqδik)

= f2
i δkq − f2

kδiq − f2
q δik + 2fkfqδiqδik

= 2f2
i − 2f2

k − 2f2
q + 2f2

k = 0.

Thus
K = −1

2
e−2f∂iΓ

k
ik = −1

2
e−2f2fii = −e−2f∆f.

(5.2) Suppose γ : [0, 1] → S is a continuous curve in a regular surface S. We further
suppose that γ is piecewise smooth and regular. That is, for some finite set of times
0 =: t0 < t1 < . . . < tk < tk+1 := 1, the curve γ|(ti,ti+1) is a smooth regular curve
for i ∈ {0, . . . , k}.

In the lectures, we showed that given any tangent vector v ∈ Tγ(0)S2, there exists
a unique continuous vector field W (t) along γ with W (0) = v, such that W (t) is
parallel for times t ∈ (0, 1) \ {t1, . . . , tk}. We say that the parallel transport along γ
of v from γ(0) to γ(1) is the vector W (1) ∈ Tγ(1)S, which we denote by Pγ(v).

a) Show that parallel transport along γ defines a linear isomorphism

Pγ : Tγ(0)S → Tγ(1)S.

Hint: consider traversing the curve in the opposite direction
γ(t) := γ(1− t).

b) Recall, stereographic coordinates on the sphere are isothermal coordinates
X : R2 → S2 \ {(0, 0,−1)}, with first fundamental form

[g]X =

(
4

(1+x2+y2)2 0

0 4
(1+x2+y2)2

)
.

Using your answer to (5.1) part b), show that along the image of straight line
γ(t) = X(cos θ · t, sin θ · t) inside the sphere, for any fixed θ ∈ R, the parallel
transport equations for a vector field W = w1(t)X1(t) + w2(t)X2(t) along γ is
the system of equations(

w′
1(t)

w′
2(t)

)
=

( 2t
1+t2 0

0 2t
1+t2

)(
w1(t)
w2(t)

)
.
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c) Again, using your answer to (5.1) part b), show that along the image of the unit
circle γ(t) = X(cos t, sin t) inside the sphere, the parallel transport equations for
a vector field W = w1(t)X1(t) +w2(t)X2(t) along γ is the system of equations(

w′
1(t)

w′
2(t)

)
=

(
0 −1
1 0

)(
w1(t)
w2(t)

)
.

d) Consider the geodesic triangle γ in the sphere which starts at the north pole
n ∈ S2, moves down to the equator, traverses a quarter of the way around the
equator, and then heads back up to the north pole (see the curve in red below).

n

Using your answers to parts b) and c), show that the parallel transport along γ
defines a map Pγ : TnS2 → TnS2 which corresponds to a rotation by π

2 radians.

Solution (5.2)

a) Fix u1, u2 ∈ Tγ(0)S and λ ∈ R. Let W1,W2 denote the unique parallel vector
fields along γ with Wi(0) = ui. Consider the new smooth vector field W :=
λW1 +W2 along γ. We note that

DW

ds
= [(λW1+W2)

′(s)]T = λ[W ′
1(s)]

T +[W ′
2(s)]

T = λ
DW1

ds
+

DW2

ds
= 0.

In particular, W is parallel along γ with W (0) = λu1 + u2, and thus

Pγ(λu1 + u2) = W (1) = λW1(1) +W2(1) = λPγ(u1) + Pγ(u2),

i.e. Pγ is a linear map. To show it is a linear isomorphism, we just have to
construct its inverse. Following the hint, we consider Pγ : Tγ(1)S → Tγ(0)S.
Note that for any parallel vector field W along γ, the vector field W (t) :=
W (1− t) is parallel along γ. Therefore

Pγ ◦ Pγ(W (0)) = Pγ(W (1)) = Pγ(W (0)) = W (1) = W (0),

and similarly Pγ ◦ Pγ = idTγ(1)S .
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b) Writing g in the form as given in Question 5.1, we see that

f(x, y) = log 2− log(1 + x2 + y2),

and hence
f1 =

−2x

1 + x2 + y2
, f2 =

−2y

1 + x2 + y2
.

For this choice of γ we see that u′
1(t) = cos θ, u′

2(t) = sin θ and

f1(t) =
−2t cos θ

1 + t2
, f2(t) =

−2t sin θ

1 + t2
,

which when plugged into the result of Question 5.1 part b) yields(
w′

1(t)
w′

2(t)

)
=

( 2t cos θ
1+t2 cos θ + 2t sin θ

1+t2 sin θ 2t sin θ
1+t2 cos θ − 2t cos θ

1+t2 sin θ
2t cos θ
1+t2 cos θ − 2t sin θ

1+t2 cos θ 2t cos θ
1+t2 cos θ + 2t sin θ

1+t2 cos θ

)(
w1(t)
w2(t)

)
=

( 2t
1+t2 0

0 2t
1+t2

)(
w1(t)
w2(t)

)
.

c) For this choice of γ we see that u′
1(t) = − sin t, u′

2(t) = cos t and

f1(t) = − cos t, f2(t) = − sin t,

which when plugged into the result of Question 5.1 part b) yields(
w′

1(t)
w′

2(t)

)
=

(
− cos t sin t+ cos t sin t − sin2 t− cos2 t

cos2 t+ sin2 t − cos t sin t+ sin t cos t

)(
w1(t)
w2(t)

)
=

(
0 −1
1 0

)(
w1(t)
w2(t)

)
.

d) Solving the system of equations from part b), we see that(
w1(t)
w2(t)

)
= (1 + t2) ·

(
w1(0)
w2(0)

)
,

and solving the system of equations from part c), we see that(
w1(t)
w2(t)

)
=

(
cos t − sin t
sin t cos t

)(
w1(0)
w2(0)

)
.

Letting γ1(t) = (t, 0), γ2(t) = (cos t, sin t), and γ3(t) = (0, t), within the
stereographic coordinates from part b) γ corresponds to the curve

t 7→


γ1(t) : t ∈ [0, 1],

γ2(t− 1) : t ∈ [1, π
2 + 1],

γ3(
π
2 + 1− t) : t ∈ [π2 + 1, π

2 + 2],

Let v := (v1, v2) ∈ TnS2 be any vector in the tangent space. and hence if
wi(0) = vi, we have that(
w1(1)
w2(1)

)
=

(
2v1
2v2

)
,

(
w1(1 +

π
2 )

w2(1 +
π
2 )

)
=

(
−2v2
2v1

)
,

(
w1(2 +

π
2 )

w2(2 +
π
2 )

)
=

(
−v2
v1

)
.

Therefore, Pγ(v1, v2) = (−v2, v1), which is a rotation about 90 degrees.
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(5.3) Suppose γ is a smooth closed simple curve inside S2. By the Jordan curve
theorem, γ splits S2 into two regions. Show that these two regions have equal area if
and only if ∫

γ

κG ds = 0.

Solution (5.3) Since γ is a smooth closed simple curve in the sphere, there exists
p ∈ S2 not in its trace, and hence by taking stereographic projection, we may assume
γ is contained within a single (isothermal) coordinate chart. Then, by the local Gauss
Bonnet theorem, we have that∫

Ω

K dA+

∫
γ

κG ds = 2π,

where Ω denotes the compact region in the coordinate chart bounded by γ. Since K ≡ 1,
it follows that ∫

γ

κG ds = 2π −
∫
Ω

dA,

and therefore the total geodesic curvature is zero iff the area of Ω is 2π, which is
precisely half the area of the sphere.
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