Solutions 4

.....

- (4.1) Consider a regular surface given by the graph of a smooth function $f : \mathbb{R}^2 \to \mathbb{R}$.
 - a) Find a formula for the Gaussian curvature K and the mean curvature H on the surface in terms of f and its partial derivatives.
 - b) Find an example of a regular surface S with a planar point $p \in S$ for which every neighbourhood $p \in V \subseteq S$ contains points laying on both sides of the hyperplane $p + T_p S$.

Hint: Consider degree three homogeneous polynomials
$$f(x, y) = ax^3 + bx^2y + cxy^2 + dy^3.$$

c) Find an example of a regular surface S with vanishing Gaussian curvature $K \equiv 0$, but with points $p, q \in S$ such that

$$H(q) < 0 < H(p).$$

Solution (4.1)

a) Using the global coordinate chart $X(u_1, u_2) = (u_1, u_2, f(u_1, u_2))$, we find that

$$g = \begin{pmatrix} 1+f_1^2 & f_1f_2\\ f_1f_2 & 1+f_2^2 \end{pmatrix}, \quad h = \frac{1}{\sqrt{1+f_1^2+f_2^2}} \begin{pmatrix} f_{11} & f_{12}\\ f_{21} & f_{22} \end{pmatrix}$$

It follows that

$$K = \frac{f_{11}f_{22} - f_{12}^2}{(1 + f_1^2 + f_2^2)^{\frac{3}{2}}}, \quad H = \frac{f_{22}(1 + f_1^2) + f_{11}(1 + f_2^2) - 2f_{12}f_1f_2}{2(1 + f_1^2 + f_2^2)^{\frac{3}{2}}}$$

b) Set $f(x,y) = x^3 - 3x^2y$ and p = (0,0,0). Since f is homogeneous degree three, p is planar. Define the sequence of points $q_n = (\frac{1}{n}, \frac{1}{n})$, $p_n = (\frac{1}{n}, 0)$. Both $p_n, q_n \to (0,0)$ as $n \to \infty$, and

$$f(q_n) = -\frac{2}{n^3} < 0 < \frac{1}{n^3} = f(p_n).$$

c) Set $f(x, y) = \cos x$, so that $K \equiv 0$, but

$$H = \frac{f_{11}}{2(1+f_1^2)^{\frac{3}{2}}} = \frac{-\cos x}{2(1+\sin^2 x)^{\frac{3}{2}}}.$$

Take q = (0, 0, 1) and $p = (\pi, 0, -1)$.

(4.2) Let $S \subseteq \mathbb{R}^3$ be a compact orientable surface with Gauss map $N : S \to \mathbb{S}^2$. For each $p \in S$ and r > 0, we define the open subset of S

 $B_S(p,r) := \{ x \in S : ||x - p|| < r \} = B(p,r) \cap S.$

Consider the smooth function $\Psi: S \times \mathbb{R} \to \mathbb{R}^3$ defined by

$$\Psi(p,t) := p + t \cdot N_p, \quad \forall (p,t) \in S \times \mathbb{R}.$$

- a) Show that for every point p ∈ S, there exists some ε_p > 0 such that Ψ restricted to B_S(p, ε_p) × (-ε_p, ε_p) is smooth diffeomorphism onto its image.
- b) Fix $p,q \in S$ and let $|t| < \epsilon_p$ and $|s| < \epsilon_q$. If $\Psi(p,t) = \Psi(q,s)$, show that

 $\|p - q\| \le \epsilon_p + \epsilon_q.$

- c) Show that there exists some $\epsilon > 0$ such that Ψ restricted to $S \times (-\epsilon, \epsilon)$ is a smooth diffeomorphism onto its image $N_{\epsilon}S \subseteq \mathbb{R}^{3}$.
- d) Given a smooth function f : S → (-ε, ε), we define the corresponding section of the normal bundle to be the function σ_f : S → N_εS given by

$$\sigma_f(p) := p + f(p)N_p, \quad \forall p \in S.$$

Show that $\sigma_f(S)$ is homeomorphic to S.

Solution (4.2)

a) In local coordinates $X: U \to S$ about a point p, with X(0,0) = p, we have the smooth function

$$\widehat{\Psi}(u,v,t) := \Psi(X(u,v),t) = X(u,v) + t \cdot N_{(u,v)}.$$

Differentiating at the point $(0,0,0) \in U \times \mathbb{R}$ we have

$$\hat{\Psi}_u(0,0,0) = X_u(0,0), \quad \hat{\Psi}_v(0,0,0) = X_v(0,0), \quad \hat{\Psi}_t(0,0,0) = N_{(0,0)},$$

which are linearly independent, and so $d\hat{\Psi}(0,0,0)$ is invertible. Thus, by the Inverse Function Theorem, there exists an open subset $(0,0,0) \in W \subseteq U \times \mathbb{R}$ such that $\hat{\Psi} \sqcup W$ is a diffeomorphism onto its image. Since W is open, after possibly shrinking W we may assume it has the form

$$W = V \times I$$
,

where $(0,0) \in V \subseteq U$ is open and $0 \in I \subseteq \mathbb{R}$ is an open interval. Since X is a diffeomorphism, it follows that Ψ restricted to $X(V) \times I$ is a diffeomorphism. As $p \in X(V)$ is an open subset of S, the result follows.

b) $\Psi(p,t) = \Psi(q,s) \iff p + tN_p = q + sN_q$. Rearranging and using the triangle inequality

$$||p - q|| = ||tN_p - sN_q|| \le |t| ||N_p|| + |s| ||N_q|| = |t| + |s| \le \epsilon_p + \epsilon_q.$$

c) By part a), we can cover S by open subsets $B_S(p, \frac{\epsilon_p}{2})$. Since S is compact, we may restrict to a finite subcover

$$S \subseteq \bigcup_{i=1}^{N} B_S(p_i, \frac{\epsilon_{p_i}}{2})$$

Set $\epsilon := \frac{1}{2} \min\{\epsilon_{p_1}, \ldots, \epsilon_{p_N}\} > 0$. By part a), the functions Ψ piece together to form a smooth map

$$\Psi: S \times (-\epsilon, \epsilon) \to \mathbb{R}^3.$$

If Ψ is injective, then its inverse is well-defined and agrees with the local inverse given in part a) which is smooth, so we are done.

To show Ψ is injective, suppose $\Psi(p,t) = \Psi(q,s)$ for some $(p,t), (q,s) \in S \times (-\epsilon, \epsilon)$. We know that $p \in B_S(p_i, \epsilon_i)$ for some $i \in \{1, \ldots, N\}$. By part b) we must have

$$\|p - q\| \le 2\epsilon < \epsilon_{p_i}$$

and hence $q \in B_S(p_i, \epsilon_i)$ also. But then by part a), (p, t) = (q, s) and Ψ is injective.

d) Since

$$\sigma_f(p) = \Psi(p, f(p)), \quad \forall p \in S,$$

 σ_f is a smooth bijective map onto its image. It remains to show σ_f^{-1} is continuous.

Let $\pi: S \times (-\epsilon, \epsilon) \to S$ denote the projection map onto its first component. By the composition of smooth functions, the projection map $\pi \circ \Psi^{-1}: N_{\epsilon}S \to S$ is smooth. In particular, its restriction to $\sigma_f(S)$ is continuous. But this is precisely σ_f^{-1} .

(4.3) Recall from §4.3 of the lecture notes that coordinates $X : U \to S$ are called *isothermal coordinates* if there is a smooth function $\lambda : U \to \mathbb{R}$ such that the first fundamental form

$$[g_{(u,v)}]_X = \begin{pmatrix} \lambda^2(u,v) & 0\\ 0 & \lambda^2(u,v) \end{pmatrix}, \quad \forall (u,v) \in U.$$

- a) Show that $\langle X_{uu}, X_u \rangle = \lambda \cdot \lambda_u$.
- b) Show that ΔX is parallel to the normal vector N.
- c) Find a formula relating ΔX with the mean curvature H, and conclude that H vanishes on X(U) iff X is harmonic on U.

Solution (4.3)

a)

$$\langle X_{uu}, X_u \rangle = \frac{1}{2} \partial_u \cdot \langle X_u, X_u \rangle = \lambda \cdot \lambda_u$$

b)

$$\begin{split} \langle X_{vv}, X_u \rangle &= \partial_v \cdot \langle X_v, X_u \rangle - \langle X_v, X_{vu} \rangle \\ &= -\frac{1}{2} \partial_u \cdot \langle X_v, X_v \rangle = -\lambda \cdot \lambda_u, \end{split}$$

and hence

$$\langle \Delta X, X_u \rangle = \langle X_{uu} + X_{vv}, X_u \rangle = \lambda \lambda_u - \lambda \lambda_u = 0.$$

Similarly, $\langle \Delta X, X_v \rangle = 0$, and so $\Delta X(p) \perp T_p S$ and hence parallel to N_p .

c) From the notes we have that

$$H(p) = \frac{g_{11}h_{22} + g_{22}h_{11} - 2g_{12}h_{12}}{2(g_{11}g_{22} - g_{12}^2)} = \frac{h_{11} + h_{22}}{2\lambda^2}$$

Since $h_{11} + h_{22} = \langle X_{uu} + X_{vv}, N \rangle = \langle \Delta X, N \rangle$, we find that

$$\Delta X(p) = \langle \Delta X(p), N_p \rangle N_p = 2\lambda^2 H(p) \cdot N_p.$$

Since the normal vector is always non-zero, and since $\lambda^2 \neq 0$ (as g is non-degenerate), we conclude that X is harmonic iff $H \equiv 0$.