Midterm Practise Questions

(Q1)

- a) Let $I \subseteq \mathbb{R}$ be an open interval and let $\gamma : I \to \mathbb{R}^3$ be a smooth regular curve. Define what it means for γ to be parameterised by arc-length.
- b) Give the definition of the curvature κ_{γ} of γ at a point $s \in I$.
- c) Suppose now that the trace $\gamma(I)$ is contained within the closed unit ball

$$\gamma(s) \in \overline{B} := \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 1\}, \quad \forall s \in I.$$

If $\|\gamma(s_0)\| = 1$ for some $s_0 \in I$, show that the curvature satisfies

$$\kappa_{\gamma}(s_0) \ge 1.$$

- d) Find the curvature of the ellipse $\{x^2 + 4y^2 = 1, z = 0\}$ where it touches the unit sphere.
- e) Consider now a smooth regular curve $\eta: I \to \mathbb{R}^3$ contained with the cylinder

 $\eta(s) \in C := \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1\}, \quad \forall s \in I.$

If $\eta(s_0)$ lies on the boundary of the cylinder

$$\eta(s_0) \in \partial C = \{ (x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1 \},\$$

for some $s_0 \in I$, is it necessarily true that its curvature satisfies $\kappa_{\eta}(s_0) \ge 1$? Justify your answer.

Solution (1)

- a) If $\|\gamma'(s)\| = 1$ for every $s \in I$.
- b) If γ is parameterised by arc-length, then $\kappa_{\gamma} = \|\gamma''(s)\|$.
- c) The smooth function $\|\gamma\|^2$ has a local maximum at s_0 , and hence

$$0 \ge \frac{d^2}{ds^2} \|\gamma\|^2|_{s_0} = 2\gamma(s_0) \cdot \gamma''(s_0) + 2\|\gamma'(s_0)\|^2$$

Rearranging, and using an arc-length parameterisation,

$$-\gamma(s_0) \cdot \gamma''(s_0) \ge 1,$$

and by Cauchy-Schwarz we find

$$\kappa_{\gamma}(s_0) = \|\gamma''(s_0)\| \cdot \underbrace{\|-\gamma(s_0)\|}_{=1} \ge -\gamma(s_0) \cdot \gamma''(s_0) \ge 1.$$

d) We first parameterise the ellipse by

$$\gamma(t) = (\cos t, \frac{1}{2}\sin t, 0).$$

We will use the formula $\kappa = \frac{\|\gamma' \times \gamma''\|}{\|\gamma'\|^3}$ from the notes. Note that $\gamma'(t) = (-\sin t, \frac{1}{2}\cos t, 0)$, and $\gamma''(t) = (-\cos t, -\frac{1}{2}\sin t, 0)$. Thus, $\gamma' \times \gamma'' = (0, 0, \frac{1}{2})$, and $\|\gamma'\|^2 = \sin^2(t) + \frac{1}{4}\cos^2 t$. Plugging everything into our formula, we find

$$\kappa = \frac{1}{2(\sin^2(t) + \frac{1}{4}\cos^2 t)^{\frac{3}{2}}}$$

Note that the ellipse touches the sphere precisely when y = 0, or sin(t) = 0. Therefore, the curvature at these points is 4.

- e) No. Consider the vertical line $\eta(t) = (1, 0, t)$. This curve is completely contained within the boundary ∂C , however it has zero curvature everywhere.
- (Q2) Let $S \subseteq \mathbb{R}^3$.
 - a) Define what it means for S to be a regular surface.
 - b) Is the subset

$$\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = z^3\}$$

a regular surface? Justify your answer.

- c) Fix S to be a regular surface. Define what is means for a function $f: S \to \mathbb{R}$ to be smooth.
- d) Consider the smooth function $f: S \to \mathbb{R}$ defined by

$$f(p) := \|p\|^2, \quad \forall p \in S.$$

Show that $p \in S$ is a critical point of f, if and only if the vector p is perpendicular to the tangent space T_pS .

e) Suppose now that S is also oriented with Gauss map $N: S \to \mathbb{S}^2$. Consider the smooth function $g: S \to \mathbb{R}$ defined by

$$g(p) = p \cdot N_p, \quad \forall p \in S.$$

Show that $p \in S$ is a critical point of g if and only if the vector p is perpendicular to the image of the shape operator at p.

Solution (2)

- a) S is a regular surface if, for every $p \in S$, there exists open sets $U \subseteq \mathbb{R}^2$ and $p \in V \subseteq \mathbb{R}^3$, and a smooth map $X : U \to V \cap S \subseteq \mathbb{R}^3$, such that
 - (i) X is an immersion:

 $dX(q): \mathbb{R}^2 \to \mathbb{R}^3$ is injective, for all $q \in U$.

(ii) X is a homeomorphism:

X is bijective with both X and X^{-1} continuous.

b) No. If it was, then we showed in the course that it would locally be a smooth graph in a neighbourhood of the origin. Since the projection maps onto the $\{x = 0\}$ and $\{y = 0\}$ planes are not injective on any neighbourhood of the origin, it must a local graph over the $\{z = 0\}$ plane. However, the function $z = (x^2 + y^2)^{\frac{1}{3}}$ is NOT smooth at x = y = 0:

$$\lim_{x \downarrow 0} \frac{\partial z}{\partial x}(x,0) = \lim_{x \downarrow 0} \frac{2}{3} x^{-\frac{1}{3}} = \infty.$$

- c) f is said to be smooth at $p \in S$ if, for some coordinate chart $X : U \subseteq \mathbb{R}^2 \to V \cap S \subseteq \mathbb{R}^3$, with $p \in V$, the composition $f \circ X : U \to \mathbb{R}$ to smooth at $X^{-1}(p)$. We say that f is smooth if f is smooth at every $p \in S$.
- d) For any smooth curve γ in S with $\gamma(0) = p$, we have

$$df_p \cdot \gamma'(0) = (f \circ \gamma)'(0)$$
$$= \frac{d}{dt} \|\gamma(t)\|^2|_{t=0}$$
$$= 2\gamma(0) \cdot \gamma'(0)$$
$$= 2p \cdot \gamma'(0).$$

Therefore, $df_p \cdot v = 0$ iff $p \cdot v = 0$ for any tangent vector $v \in T_pS$. It follows that p is a critical point of f if and only if $df_p \cdot v = 0$ for every $v \in T_pS$, iff $p \perp T_pS$.

e) Again, let γ be a smooth curve in S with $\gamma(0) = p$ and $\gamma'(0) = v \in T_pS$. Then

$$dg_{p} \cdot v = (g \circ \gamma)'(0)$$

= $\frac{d}{dt} \langle \gamma(t), N_{\gamma(t)} \rangle |_{t=0}$
= $\underbrace{\langle v, N_{p} \rangle}_{=0} + \langle p, dN_{p} \cdot v \rangle$
= $\langle p, dN_{p} \cdot v \rangle$.

Therefore, p is a critical point of g iff $dN_p \cdot v$ is perpendicular to p for every $v \in T_pS$ iff p is perpendicular to the image of the shape operator $p \perp (-dN_p(T_pS))$.