Homework 2

Please submit, through Blackboard, solutions to *all* of the following problems. The deadline for submissions is 18:00 on Friday 4th October 2024. Please let me know if any of the problems are unclear or have typos.

(2.1) Suppose $S \subseteq \mathbb{R}^3$ is a regular surface and $M \subseteq S$. Show that M is a regular surface if and only if M is an open subset of S.

Recall, M is an open subset of S if there exists some open subset $V \subseteq \mathbb{R}^3$ such that $M = S \cap V$.

(2.2) Given a regular surface $S \subseteq \mathbb{R}^3$, define

 $\text{Diff}(S) := \{f : S \to S : f \text{ is a smooth diffeomorphism}\}.$

- a) Show that Diff(S) forms a group where the binary operation is given by the composition of functions. We call Diff(S) the diffeomorphism group of S.
- b) Let $A : \mathbb{S}^2 \to \mathbb{S}^2$ be the antipodal map

$$A(x, y, z) = (-x, -y, -z), \quad \forall (x, y, z) \in \mathbb{S}^2.$$

Show that $A \in \text{Diff}(\mathbb{S}^2)$, and that A has order 2 in the group.

- c) For each $n \in \mathbb{N}$, find a diffeomorphism $f \in \text{Diff}(\mathbb{S}^2)$ with order n in the group.
- d) Find a diffeomorphism $f \in \text{Diff}(\mathbb{S}^2)$ with infinite order.

Hint:
$$O(3) \subseteq \text{Diff}(\mathbb{S}^2)$$
.

(2.3) Let $S_1, S_2, S_3 \subseteq \mathbb{R}^3$ be regular surfaces, and let $f: S_1 \to S_2$, and $g: S_2 \to S_3$ be smooth functions.

Show that the composition $g \circ f : S_1 \to S_3$ is smooth, and that

$$d(g \circ f)(p) = dg(f(p)) \circ df(p),$$

for any $p \in S_1$.

(2.4) Suppose $S \subseteq \mathbb{R}^3$ is a connected regular surface and $f : S \to \mathbb{R}$ is a smooth function. Show that f is a constant function if and only if df(p) = 0 as a linear map, for every $p \in S$.

Hint: as $S \subseteq \mathbb{R}^3$ *is a connected regular surface, you may assume that, for any two points* $x, y \in S$ *, there exists* $\epsilon > 0$ *a smooth regular path* $\gamma : (-\epsilon, 1 + \epsilon) \rightarrow S$ *, such that* $\gamma(0) = x$ *and* $\gamma(1) = y$.