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Introduction

This course will cover the basics of classical differential geometry: the study of local and global
properties of curves and surfaces embedded within an extrinsic Euclidean space. This is distin-
guished from the modern approach to differential geometry, which deals mainly with intrinsically
defined objects instead.

Despite the names classical and modern, the classical theory still has many uses in modern
mathematics, as well as being essential for a deep intuitive understanding of the theory as a whole.

This course will introduce the basic concepts of differential geometry and prove many funda-
mental results regarding their structure. In turn, this will motivate the more modern approach to
the subject. A fundamental result, the Theorem Egregium (1827) originally due to Gauss, states
that

The Gaussian curvature of a surface depends only on intrinsic properties of the surface, and not
on how such a surface is embedded in three space.

We will see a more precise formulation of the above theorem later in the course.

A remark on notation:
Often, I will use the notation associated with the more modern approach to the subject, rather
than the classical notation in a lot of older textbooks. For example, in this course we will denote
the first and second fundamental forms by 𝑔 and ℎ, as opposed to the notation I and II found in the
literature.
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1 Curves

Recall, an interval is a non-empty connected subset of R.

Definition 1.1. A curve in R3 is a continuous map 𝛾 : 𝐼 → R3, where 𝐼 ⊆ R is an open interval.
We say that 𝛾 is a smooth curve if 𝛾 is a smooth function. The image 𝛾 (𝐼 ) ⊆ R3 is called the trace
of 𝛾 .

Remark.

• Replacing R3 with R𝑛 is a valid generalisation of the above definition, although in this
course we restrict our attention to the cases 𝑛 = 2 or 3.

• We specify that our domain is open since we want our curve to be locally given by a section
of the real line. Also, for smooth curves, its derivatives will then exist everywhere.

• We could replace the condition of being smooth with being 𝐶𝑘 for any 𝑘 ≥ 1 instead, and
all of the theory will carry through. However, to avoid unnecessary technicalities, we shall
always work in the category of smooth objects in this course.

Lets begin with some simple examples.

Example 1.2. The function 𝛾 : R → R3 given by

𝛾 (𝑡) =
{
(−1, 𝑡, 0) : 𝑡 ≤ 0,
(1, 𝑡, 0) : 𝑡 > 0,

is not a curve, since the function is not continuous.

Example 1.3. Fix 𝛼, 𝛽 > 0 and consider the curve 𝛾 : R → R3, given by

𝛾 (𝑡) = (𝛼 cos 𝑡, 𝛼 sin 𝑡, 𝛽𝑡), ∀𝑡 ∈ R.

It is clear that 𝛾 is smooth. Its trace 𝛾 (R) is a helix.
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1 Curves

Example 1.4. Consider the curve 𝛾 : R → R2, given by

𝛾 (𝑡) = (𝑡3, 𝑡2), ∀𝑡 ∈ R.

Note that 𝛾 is smooth, however, its trace appears to have a singularity at the origin - there is no
unique tangent line to the curve at this point. We will return to this example later.

Example 1.5. Consider the curve 𝛾 : R → R2 defined by

𝛾 (𝑡) = (𝑡3 − 4𝑡, 𝑡2 − 4), ∀𝑡 ∈ R.

It is clear that 𝛾 is smooth. However, 𝛾 is not injective; there are points of self-intersection

𝛾 (2) = (0, 0) = 𝛾 (−2).

Example 1.6. The curve 𝛾 : R → R2 defined by

𝛾 (𝑡) = (𝑡, |𝑡 |), ∀𝑡 ∈ R,

is not smooth, since the map 𝑡 ↦→ |𝑡 | is not differentiable at 𝑡 = 0.

Exercise. Find a smooth curve which has the same trace as the above non-smooth curve. What
can be said about the derivative of this curve at the origin?

In order to remove singularities such as the cusp like singularity from Example 1.4, we
introduce an extra condition on our curves.

1.1 Regular curves

Definition 1.7. Let 𝛾 : 𝐼 → R3 be a smooth curve. We say that 𝛾 is regular if

∥𝛾 ′(𝑡)∥ ≠ 0, ∀𝑡 ∈ 𝐼 .

If we interpret 𝛾 (𝑡) as the position of a particle at time 𝑡 , then 𝛾 is regular if the speed of the
particle is never zero. Equivalently, 𝛾 is regular if its velocity is never the zero vector, i.e

𝛾 ′(𝑡) ≠ (0, 0, 0), ∀𝑡 ∈ 𝐼 .

If 𝛾 is a regular curve, then for every 𝑡 ∈ 𝐼 , there is a unique straight line in R3 tangent to the
curve 𝛾 (𝐼 ) at the point 𝛾 (𝑡), given parametrically as

{𝛾 (𝑡) + 𝑠𝛾 ′(𝑡) ∈ R3 : 𝑠 ∈ R}.

Remark. Examples 1.3 & 1.5 are regular curves, and Example 1.4 is not regular.

As we shall see in this course, the existence of a canonical tangent line (or more generally
tangent plane/tangent space) is essential for well-defined consistent formulations of calculus on
our objects. We therefore restrict our attention to regular curves for the remainder of this section.
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1 Curves

1.2 Arc length

Given a closed interval [𝑎, 𝑏] ⊆ 𝐼 , the arc length of 𝛾 restricted to the interval [𝑎, 𝑏] is given by

𝐿(𝛾 | [𝑎,𝑏 ]) =
∫ 𝑏

𝑎

∥𝛾 ′(𝑡)∥𝑑𝑡 .

Example 1.8. Returning to one of the curves from Example 1.3, for 𝛾 : R → R3 given by

𝛾 (𝑡) = (3 cos 𝑡, 3 sin 𝑡, 4𝑡), ∀𝑡 ∈ R,

we have
∥𝛾 ′(𝑡)∥ =

√︁
9 sin2 𝑡 + 9 cos2 𝑡 + 16 = 5,

and hence

𝐿(𝛾 | [𝑎,𝑏 ]) =
∫ 𝑏

𝑎

5 𝑑𝑡 = 5(𝑏 − 𝑎) .

Definition 1.9. Suppose 𝐼 , 𝐽 are open intervals, 𝛾 : 𝐼 → R3 is a curve, and 𝑓 : 𝐽 → 𝐼 a continuous
function. Then the composition 𝛾 := 𝛾 ◦ 𝑓 : 𝐽 → R3 is called a reparameterisation of 𝛾 . The two
curves have the same trace

𝛾 (𝐼 ) = 𝛾 (𝐽 ) .

The following example demonstrates how arc-length is invariant under reparameterisations of
regular curves.

Example 1.10. Suppose 𝐼 , 𝐽 are open intervals, 𝛾 : 𝐼 → R3 is a smooth regular curve, and
𝑓 : 𝐽 → 𝐼 is smooth with 𝑓 ′ > 0. Define the new regular smooth curve 𝛾 : 𝐽 → R3 via 𝛾 = 𝛾 ◦ 𝑓 .
It follows from the change of variables formula that

𝐿(𝛾 | [𝑎,𝑏 ]) =
∫ 𝑏

𝑎

| (𝛾 ◦ 𝑓 )′(𝑠) | 𝑑𝑠

=

∫ 𝑏

𝑎

|𝛾 ′(𝑓 (𝑠)) | 𝑓 ′(𝑠)𝑑𝑠

=

∫ 𝑓 (𝑏 )

𝑓 (𝑎)
|𝛾 ′(𝑡) | 𝑑𝑡

= 𝐿(𝛾 | [ 𝑓 (𝑎),𝑓 (𝑏 ) ]) .

Exercise. Let 𝛾1, 𝛾2 : R → R2 be the smooth curves

𝛾1(𝑡) = (𝑡, 0), 𝛾2(𝑡) = (2𝑡3 − 𝑡, 0), ∀𝑡 ∈ R.

Show that 𝛾1( [−1, 1]) = 𝛾2( [−1, 1]), but 𝐿(𝛾1 | [−1,1]) < 𝐿(𝛾2 | [−1,1]). That is, for non-regular
parameterisations of curves, the arc length is dependent on the parameterisation, since we may
retrace parts of the curve.
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1 Curves

Amongst all reparameterisation of a smooth regular curve, those traversed at unit speed are
particularly important.

Definition 1.11. A smooth regular curve 𝛾 : 𝐼 → R3 is parameterised by arc-length if

∥𝛾 ′(𝑠)∥ = 1, ∀𝑠 ∈ 𝐼 .

Lemma 1.12. Every smooth regular curve 𝛾 : 𝐼 → R3 admits an arc-length reparameterisation.

Proof. Fix 𝑡0 ∈ 𝐼 and define the map 𝑠 : 𝐼 → R via

𝑠 (𝑡) :=
∫ 𝑡

𝑡0

∥𝛾 ′(𝑥)∥𝑑𝑥. (1.1)

Since 𝛾 is smooth, 𝑠 is a smooth map (Exercise) with the image of 𝑠 an open interval 𝐽 ⊆ R.
As 𝑠′(𝑡) = ∥𝛾 ′(𝑡)∥ > 0, by the inverse function theorem, 𝑠 admits a smooth inverse 𝑡 : 𝐽 → 𝐼 .
Consider the reparameterisation 𝛾 := 𝛾 ◦ 𝑡 : 𝐽 → R3. For all 𝑠 ∈ 𝐽 , we have

∥𝛾 ′(𝑠)∥ = ∥𝛾 ′(𝑡 (𝑠))∥
����𝑑𝑡𝑑𝑠 ���� = ∥𝛾 ′(𝑡)∥ · ∥𝛾 ′(𝑡)∥−1 = 1. □

Example 1.13. For the curve 𝛾 (𝑡) = (3 cos 𝑡, 3 sin 𝑡, 4𝑡) from Example 1.8, since its speed is
constant, we find a simple arc-length parameterisation

𝛾 (𝑡) =
(
3 cos

𝑡

5
, 3 sin

𝑡

5
,
4𝑡
5

)
.

Example 1.14. Returning to the curve 𝛾 (𝑡) = (𝑡3 − 4𝑡, 𝑡2 − 4) from Example 1.5, an arc-length
parameterisation is given by the composition of 𝛾 with the inverse of the function

𝑠 (𝑡) =
∫ 𝑡

0

√
9𝑥4 − 20𝑥2 + 16 𝑑𝑥.

This example demonstrates that, although such an arc-length parameterisation always exists,
even in simple cases it is difficult to express explicitly.

1.3 Curvature, Torsion, and the Frenet formulas

Given a regular smooth curve 𝛾 : 𝐼 → R3 parameterised by arc length, we note that differentiating
the equation ∥𝛾 ′∥ ≡ 1 gives the identity

⟨𝛾 ′, 𝛾 ′′⟩ = 0.

Example 1.15. Consider 𝛾 : R → R2 with

𝛾 (𝑡) = (cos 𝑡, sin 𝑡).
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1 Curves

This curve respresents a particle moving around the unit circle at unit speed. Differentiating we
find

𝛾 ′(𝑡) = (− sin 𝑡, cos 𝑡) ⊥ (− cos 𝑡,− sin 𝑡) = 𝛾 ′′(𝑡), ∀𝑡 ∈ R,

or the acceleration of the particle is perpendicular to the velocity. In particular, since the
magnitude of the velocity is constant, the acceleration measures precisely the change in direction
of the velocity.

The magnitude of the acceleration of a curve parameterised by arc-length is known as the
curvature of the curve.

Definition 1.16. Given a regular smooth curve 𝛾 : 𝐼 → R3 parameterised by arc length, the
number 𝜅 (𝑠) := ∥𝛾 ′′(𝑠)∥ ≥ 0 is called the curvature of 𝛾 at 𝑠 ∈ 𝐼 .

At a point where 𝜅 (𝑠) > 0, we define the orthogonal unit vectors

𝑇 (𝑠) := 𝛾 ′(𝑠), 𝑁 (𝑠) := 𝛾 ′′(𝑠)
∥𝛾 ′′(𝑠)∥ , 𝐵(𝑠) := 𝑇 (𝑠) × 𝑁 (𝑠) .

We call 𝑇 the tangent vector, 𝑁 the normal vector, and 𝐵 the binormal vector at 𝛾 (𝑠). Define
Span{𝑇 (𝑠), 𝑁 (𝑠)} to be the osculating plane at𝛾 (𝑠), and the orthonormal frame {𝑇 (𝑠), 𝑁 (𝑠), 𝐵(𝑠)}
the Frenet frame at 𝛾 (𝑠).

Theorem 1.17. Let 𝛾 : 𝐼 → R3 be a regular smooth curve parameterised by arc length with
curvature 𝜅 > 0 (non-degenerate). Then the Frenet frame {𝑇, 𝑁, 𝐵} satisfies the differential
equation ©«

𝑇

𝑁

𝐵

ª®¬
′

=
©«
0 𝜅 0
−𝜅 0 𝜏

0 −𝜏 0

ª®¬ ©«
𝑇

𝑁

𝐵

ª®¬ ,
where 𝜏 is a smooth function called the torsion of 𝛾 .

Proof. From the definition of curvature, 𝑇 ′ = 𝜅𝑁 . Since 𝑁 and 𝐵 have unit length, 𝑁 ′ ⊥ 𝑁 and
𝐵′ ⊥ 𝐵. In particular, we find that

𝑁 ′ = ⟨𝑁 ′,𝑇 ⟩𝑇 + ⟨𝑁 ′, 𝐵⟩ 𝐵,
𝐵′ = ⟨𝐵′,𝑇 ⟩𝑇 + ⟨𝐵′, 𝑁 ⟩ 𝑁 .

We first note that, by the product rule for the dot product

⟨𝑁 ′,𝑇 ⟩ =����⟨𝑁,𝑇 ⟩′ − ⟨𝑁,𝑇 ′⟩ = −𝜅.

If we define the torsion 𝜏 := ⟨𝑁 ′, 𝐵⟩, we can conclude that 𝑁 ′ = −𝜅𝑇 + 𝜏𝐵 as required. Finally,
we finish the proof by calculating

⟨𝐵′,𝑇 ⟩ = ⟨(𝑇 × 𝑁 )′,𝑇 ⟩ = ⟨����
𝑇 ′ × 𝑁,𝑇 ⟩ + ⟨𝑇 × 𝑁 ′,𝑇 ⟩ = 0,

⟨𝐵′, 𝑁 ⟩ = ⟨𝑇 × 𝑁 ′, 𝑁 ⟩ = ⟨𝑇 × (−𝜅𝑇 + 𝜏𝐵), 𝑁 ⟩ = 𝜏 ⟨𝑇 × 𝐵, 𝑁 ⟩ = −𝜏 . □
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1 Curves

As a consequence of Theorem 1.17, we see that

𝐵′ = −𝜏𝑁,

and hence the torsion is a quantative measure of how quickly the binormal vector moves in the
direction of the normal vector. Alternatively, one may view the torsion as a measure of twisting
of the osculating plane, with a fixed osculating plane along the curve corresponding to zero torsion.

As we shall in this chapter, the torsion and curvature completely characterise the geometry
of a curves trace. We begin with the following simple lemma for particularly special cases of
curvature and torsion.

Lemma 1.18. Suppose 𝛾 : 𝐼 → R3 is a regular curve parameterised by arc length. Then

(i) 𝜅 ≡ 0 ⇐⇒ 𝛾 (𝐼 ) is a straight line.

(ii) 𝜅 > 0 and 𝜏 ≡ 0 ⇐⇒ 𝛾 (𝐼 ) is a plane curve.

(iii) 𝜅 = 𝑟−10 > 0 is constant and 𝜏 ≡ 0 ⇐⇒ 𝛾 (𝐼 ) is a circular arc of radius 𝑟0.

Proof. (i) If the curvature vanishes, then 𝛾 ′′ ≡ 0. This second order differential equation has
general solution 𝛾 (𝑡) = 𝑎𝑡 + 𝑏 for some 𝑎, 𝑏 ∈ R3. The converse is obvious.

(ii) Recall, the torsion vanishing is equivalent to the binormal vector 𝐵 being fixed. If 𝛾 is a
plane curve, then the osculating plane and binormal vector 𝐵 are fixed. Conversely, if 𝐵 is
a fixed vector, fix 𝑡0 ∈ 𝐼 , and consider the smooth function

𝑓 (𝑡) := ⟨𝛾 (𝑡) − 𝛾 (𝑡0), 𝐵⟩ , ∀𝑡 ∈ 𝐼 .

Differentiating, we have 𝑓 ′(𝑡) = ⟨𝑇, 𝐵⟩ = 0, and as 𝑓 (𝑡0) = 0, 𝑓 ≡ 0 or 𝛾 (𝑡) −𝛾 (𝑡0) ⊥ 𝐵 for
all 𝑡 ∈ 𝐼 . Therefore 𝛾 (𝐼 ) lies in the plane containing 𝛾 (𝑡0) orthogonal to 𝐵.

(iii) By the previous part, we may assume 𝛾 (𝐼 ) lies in the plane {𝑧 = 0} with 𝐵 ≡ (0, 0, 1).
Consider the smooth function

𝑓 (𝑡) = 𝛾 (𝑡) + 𝑟0𝑁 (𝑡), ∀𝑡 ∈ 𝐼 .

Differentiating
𝑓 ′(𝑡) = 𝑇 (𝑡) − 𝑟0𝜅 (𝑡)𝑇 (𝑡) = 0,

and so 𝑓 ≡ 𝑎, for some fixed vector 𝑎 ∈ R3. In particular, ∥𝛾 − 𝑎∥ = 𝑟0. The converse is
again obvious. □

Although the formulas for curvature and torsion are expressed simply with respect to an
arc-length parameterisation, in practise, such a parameterisation is impractical. The following
lemma gives the appropriate formulas for a general regular smooth curve.

Lemma 1.19. Given a regular smooth curve 𝛾 : 𝐼 → R3, not necessarily parameterised by arc
length, we have the following formulas for the curvature and torsion:

𝜅 (𝑡) = ∥𝛾 ′(𝑡) × 𝛾 ′′(𝑡)∥
∥𝛾 ′(𝑡)∥3 , 𝜏 (𝑡) = ⟨𝛾 ′(𝑡) × 𝛾 ′′(𝑡), 𝛾 ′′′(𝑡)⟩

∥𝛾 ′(𝑡) × 𝛾 ′′(𝑡)∥2 , ∀𝑡 ∈ 𝐼 .
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1 Curves

Proof. Let 𝑠 : 𝐼 → 𝐽 be as in (1.1) so that 𝛾 ◦ 𝑠−1 is an arc-length reparameterisation of 𝛾 . In
particular, 𝑑𝑠

𝑑𝑡
= ∥𝛾 ′(𝑡)∥. Applying the chain rule, we have

𝛾 ′(𝑡) = 𝑑𝛾

𝑑𝑠
(𝑠 (𝑡)) · 𝑑𝑠

𝑑𝑡
= 𝑇 (𝑡) · ∥𝛾 ′(𝑡)∥,

𝑇 ′(𝑡) = 𝑑𝑇

𝑑𝑠
(𝑠 (𝑡)) · 𝑑𝑠

𝑑𝑡
= 𝜅 (𝑡)𝑁 (𝑡) · ∥𝛾 ′(𝑡)∥ .

Combining these formulas, we find that

𝛾 ′′ = ( ∥𝛾 ′∥𝑇 )′ = ∥𝛾 ′∥′𝑇 + ∥𝛾 ′∥2𝜅𝑁,

and therefore
𝛾 ′ × 𝛾 ′′ = ∥𝛾 ′∥𝑇 ×

(
∥𝛾 ′∥′𝑇 + ∥𝛾 ′∥2𝜅𝑁

)
= ∥𝛾 ′∥3𝜅𝐵,

which taking the length of and rearranging, gives the formula for 𝜅. Next, we note that

𝛾 ′′′ =
(
∥𝛾 ′∥′𝑇 + ∥𝛾 ′∥2𝜅𝑁

) ′
= ∥𝛾 ′∥′′𝑇 + ∥𝛾 ′∥′𝑇 ′ + (𝜅∥𝛾 ′∥2)′𝑁 + 𝜅∥𝛾 ′∥2𝑁 ′.

Using the Frenet formulas and the chain rule, we have that

𝜅∥𝛾 ′∥2𝑁 ′ = 𝜅∥𝛾 ′∥3(−𝜅𝑇 + 𝜏𝐵),

and so
𝛾 ′′′ = 𝑓 𝑇 + 𝑔𝑁 + 𝜏𝜅∥𝛾 ′∥3𝐵,

for some smooth functions 𝑓 , 𝑔 : 𝐼 → R. Therefore

⟨𝛾 ′ × 𝛾 ′′, 𝛾 ′′′⟩ =
〈
𝜅∥𝛾 ′∥3𝐵, 𝑓𝑇 + 𝑔𝑁 + 𝜏𝜅∥𝛾 ′∥3𝐵

〉
= 𝜏 (𝜅∥𝛾 ′∥3)2 = 𝜏 (∥𝛾 ′ × 𝛾 ′′∥2). □

1.4 Isometries of Euclidean space

In order to classify curves inside of R3, we need to be able to say when two curves are ‘equivalent’.
For example, if the trace of two different curves are related to one another by a translation of
R3, then despite them having different traces, their geometry is the same, and we would like
to identify these two curves as being equivalent. In particular, the two curves are related by an
isometry of R3; a bijective map into itself which preserves distances.

Definition 1.20. An isometry of R𝑛 is a bijective function 𝜑 : R𝑛 → R𝑛, such that

∥𝜑 (𝑥) − 𝜑 (𝑦)∥ = ∥𝑥 − 𝑦∥, ∀𝑥,𝑦 ∈ R𝑛 .

Suppose 𝜑 : R𝑛 → R𝑛 is an isometry that preserves the origin (𝜑 (0) = 0). Then, by the
polarisation identity, 𝜑 must also preserve angles:

⟨𝜑 (𝑥), 𝜑 (𝑦)⟩ = ∥𝜑 (𝑥)∥2 + ∥𝜑 (𝑦)∥2 − ∥𝜑 (𝑥) − 𝜑 (𝑦)∥2
2

=
∥𝑥 ∥2 + ∥𝑦∥2 − ∥𝑥 − 𝑦∥2

2
= ⟨𝑥,𝑦⟩ .

11
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Suppose 𝑀 : R𝑛 → R𝑛 is a linear isometry (that is, 𝑀 is both a linear map and an isometry). We
can rewrite the condition that 𝑀 preserves angles as〈

(𝑀𝑇𝑀 − 𝐼𝑛)𝑥,𝑦
〉
= ⟨𝑀𝑥,𝑀𝑦⟩ − ⟨𝑥,𝑦⟩ = 0, ∀𝑥,𝑦 ∈ R𝑛,

from which it follows that 𝑀𝑇𝑀 = 𝐼𝑛.

Definition 1.21. We define the orthogonal group

𝑂 (𝑛) := {𝑀 ∈ R𝑛×𝑛 : 𝑀𝑇𝑀 = 𝐼𝑛}.

In fact, it turns out that modulo translation, every isometry of Euclidean space is precisely an
element of the orthogonal group.

Theorem 1.22. Any isometry 𝜑 : R𝑛 → R𝑛 is of the form

𝜑 (𝑥) := 𝑀𝑥 + 𝑏, ∀𝑥 ∈ R𝑛,

where 𝑀 ∈ 𝑂 (𝑛) and 𝑏 ∈ R𝑛.

Sketch of Proof. Translations are isometries, and the composition of isometries is an isometry.
Therefore, setting 𝑏 = 𝜑 (0), we consider the new isometry𝜓 (𝑥) := 𝜑 (𝑥) − 𝑏, which preserves the
origin. To see that𝜓 is a linear map, for any 𝑥,𝑦 ∈ R𝑛 and 𝜆 ∈ R, we have

∥𝜓 (𝜆𝑥 + 𝑦) − 𝜆𝜓 (𝑥) −𝜓 (𝑦)∥2 = ∥𝜓 (𝜆𝑥 + 𝑦)∥2 + 𝜆2∥𝜓 (𝑥)∥2 + ∥𝜓 (𝑦)∥2

− 2 ⟨𝜓 (𝜆𝑥 + 𝑦), 𝜆𝜓 (𝑥) +𝜓 (𝑦)⟩ + 2𝜆 ⟨𝜓 (𝑥),𝜓 (𝑦)⟩
= ∥𝜆𝑥 + 𝑦∥2 + 𝜆2∥𝑥 ∥2 + ∥𝑦∥2 − 2 ⟨𝜆𝑥 + 𝑦, 𝜆𝑥 + 𝑦⟩ + 2𝜆 ⟨𝑥,𝑦⟩ = 0.

Therefore,𝜓 is a linear isometry of R𝑛, and so must be an element of 𝑂 (𝑛). □

The following lemma shows that isometries preserve the arc length, curvature and torsion of a
smooth non-degenerate curve.

Lemma 1.23. Let 𝛾 : 𝐼 → R3 be a regular smooth non-degenerate curve parameterised by arc
length, and 𝜑 : R3 → R3 an isometry. Then, 𝛾 := 𝜑 ◦ 𝛾 : 𝐼 → R3 is also parameterised by arc
length, and has the same curvature and torsion.

Proof. By the previous theorem

𝛾 (𝑠) = 𝑀𝛾 (𝑠) + 𝑏, ∀𝑠 ∈ 𝐼 ,

for some 𝑀 ∈ 𝑂 (3) and 𝑏 ∈ R3. It follows that for any 𝑠 ∈ 𝐼 , we have

∥𝛾 ′(𝑠)∥2 = ⟨𝑀𝛾 ′(𝑠), 𝑀𝛾 ′(𝑠)⟩ =
〈
𝑀𝑇𝑀︸︷︷︸
𝐼3

𝛾 ′(𝑠), 𝛾 ′(𝑠)
〉
= ∥𝛾 ′(𝑠)∥2 = 1.

Next, since 𝛾 is also parameterised by arc-length,

�̃� (𝑠) = ∥𝛾 ′′(𝑠)∥ = ∥𝑀𝛾 ′′(𝑠)∥ = ∥𝛾 ′′(𝑠)∥ = 𝜅 (𝑠) .
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To show that the torsion is preserved, we use the formula from Lemma 1.19

𝜏 =
⟨𝛾 ′ × 𝛾 ′′, 𝛾 ′′′⟩
∥𝛾 ′ × 𝛾 ′′∥2 .

Using that 𝑀 ∈ 𝑂 (3) we have

∥𝛾 ′ × 𝛾 ′′∥2 = ∥𝛾 ′∥2∥𝛾 ′′∥2 − |⟨𝛾,𝛾 ′′⟩|2

= ∥𝑀𝛾 ′∥2∥𝑀𝛾 ′′∥2 − |⟨𝑀𝛾,𝑀𝛾 ′′⟩|2

= ∥𝛾 ′∥2∥𝛾 ′′∥2 − |⟨𝛾,𝛾 ′′⟩|2

= ∥𝛾 ′ × 𝛾 ′′∥2.

Given 𝑣1, 𝑣2, 𝑣3 ∈ R3, let [𝑣1, 𝑣2, 𝑣3] denotes the 3× 3 matrix whose columns are given by the three
vectors. Then

⟨𝛾 ′ × 𝛾 ′′, 𝛾 ′′′⟩ = det[𝛾 ′, 𝛾 ′′, 𝛾 ′′′]
= det[𝑀𝛾 ′, 𝑀𝛾 ′′, 𝑀𝛾 ′′′]
= det𝑀 · det[𝛾 ′, 𝛾 ′′, 𝛾 ′′′]
= ⟨𝛾 ′ × 𝛾 ′′, 𝛾 ′′′⟩ .

Thus, 𝜏 (𝑠) = 𝜏 (𝑠). □

1.5 Existence and Uniqueness of Linear ODEs

Let 𝐴 : 𝐼 → R𝑛×𝑛 be a smooth family of 𝑛 × 𝑛 matrices. Fix 𝑡0 ∈ 𝐼 and 𝛾0 ∈ R𝑛, and consider the
initial value problem (IVP) {

𝛾 ′(𝑡) = 𝐴(𝑡) · 𝛾 (𝑡), ∀𝑡 ∈ 𝐼 ,
𝛾 (𝑡0) = 𝛾0.

(1.2)

Theorem 1.24. There exists a unique smooth solution 𝛾 : 𝐼 → R𝑛 to the above IVP.

Sketch of Proof. Without loss of generality, we may assume 𝑡0 = 0. Define the following functions
inductively: 𝛾0(𝑡) ≡ 𝛾0, and

𝛾𝑛 (𝑡) := 𝛾0 +
∫ 𝑡

0
𝐴(𝑠)𝛾𝑛−1(𝑠)𝑑𝑠, ∀𝑡 ∈ 𝐼 , ∀𝑛 ∈ N.

Fix a compact subset 0 ∈ 𝐾 ⋐ 𝐼 . Since 𝐴 is continuous,𝐶 := sup𝐾 ∥𝐴∥ < ∞, and hence for 𝑡 ∈ 𝐾 ,
we have

∥𝛾𝑛+1(𝑡) − 𝛾𝑛 (𝑡)∥ ≤ ∥
∫ 𝑡

0
𝐴(𝑠) (𝛾𝑛 (𝑠) − 𝛾𝑛−1(𝑠))𝑑𝑠 ∥

≤
����∫ 𝑡

0
∥𝐴(𝑠)∥∥𝛾𝑛 (𝑠) − 𝛾𝑛−1(𝑠)∥𝑑𝑠

����
≤ 𝑀𝐶

����∫ 𝑡

0
∥𝛾𝑛 (𝑠) − 𝛾𝑛−1(𝑠)∥𝑑𝑠

���� .
13
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Setting 𝐿 := sup𝐾 ∥𝛾1 − 𝛾0∥ < ∞ and iterating the above procedure, we find that

∥𝛾𝑛+1(𝑡) − 𝛾𝑛 (𝑡)∥ ≤ 𝐶𝑛
����∫ 𝑡

0

∫ 𝑠𝑛−1

0
· · ·

∫ 𝑠1

0
∥𝛾1(𝑠) − 𝛾0∥𝑑𝑠𝑑𝑠1 · · ·𝑑𝑠𝑛−1

����
≤ 𝐶𝑛𝐿

����∫ 𝑡

0

∫ 𝑠𝑛−1

0
· · ·

∫ 𝑠1

0
𝑑𝑠𝑑𝑠1 · · ·𝑑𝑠𝑛−1

����
=
𝐶𝑛𝐿 |𝑡 |𝑛

𝑛!
≤ 𝐶𝑛𝐿 |𝐾 |𝑛

𝑛!
.

Therefore the series 𝛾𝑛+1(𝑡) − 𝛾𝑛 (𝑡) is locally uniformly absolutely convergent, and hence there
exists a function 𝛾∞ : 𝐼 → R𝑛, with 𝛾𝑛 → 𝛾∞ locally uniformly. In particular, we conclude that

𝛾∞(𝑡) = 𝛾0 +
∫ 𝑡

0
𝐴(𝑠)𝛾∞(𝑠)𝑑𝑠, ∀𝑡 ∈ 𝐼 ,

from which it follows easily that 𝛾∞ is a smooth solution to the IVP.

To show uniqueness, suppose we have two solutions 𝛾,𝛾 : 𝐼 → R𝑛 of the same IVP. Since the
ODE is linear, their difference 𝜂 (𝑡) := 𝛾 (𝑡) −𝛾 (𝑡) is a smooth solution to the differential equation
𝜂′(𝑡) = 𝐴(𝑡) · 𝜂 (𝑡), with 𝜂 (0) = 0. Note that for 𝑡 ∈ 𝐾 , by Cauchy Schwarz we have

𝑑

𝑑𝑡
∥𝜂 (𝑡)∥2 = 2 ⟨𝐴(𝑡)𝜂 (𝑡), 𝜂 (𝑡)⟩ ≤ 2𝑀 ∥𝜂 (𝑡)∥2.

Therefore, for 𝑡 ∈ 𝐾 we can conclude that

𝑑

𝑑𝑡

(
𝑒−2𝑀𝑡 ∥𝜂 (𝑡)∥2

)
≤ 0,

from which it is easy to see that 𝜂 ≡ 0, or equivalently, 𝛾 ≡ 𝛾 . □

1.6 Fundamental Theorem of Curves

Definition 1.25. Given two subsets 𝑋,𝑌 ⊆ R3, we say that 𝑋 and 𝑌 are isometric, written 𝑋 � 𝑌 ,
if there exists an isometry 𝜑 : R3 → R3 such that 𝜑 (𝑋 ) = 𝑌 .

The following theorem states that every non-degenerate regular curve in R3 is uniquely deter-
mined by its curvature and torsion.

Theorem 1.26. Let 𝜅 : 𝐼 → (0,∞) be a smooth positive function and 𝜏 : 𝐼 → R a smooth
function. Then, there exists a regular non-degenerate curve 𝛾 : 𝐼 → R3 parameterised by arc
length such that the curvature and torsion of 𝛾 are precisely the functions 𝜅 and 𝜏 . Moreover, if
𝜂 : 𝐼 → R3 is any other curve parameterised by arc length with the same curvature and torsion,
then 𝛾 (𝐼 ) � 𝜂 (𝐼 ).

Proof. To show existence, we first fix 𝑡0 ∈ 𝐼 and recall the Frenet formula from Theorem 1.17

©«
𝑇

𝑁

𝐵

ª®¬
′

=
©«
0 𝜅 0
−𝜅 0 𝜏

0 −𝜏 0

ª®¬ ©«
𝑇

𝑁

𝐵

ª®¬ .
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Note, defining the smooth family of 9 × 9 matrices 𝐴 : 𝐼 → R9×9 by

𝐴(𝑡) := ©«
0 𝜅 (𝑡)𝐼3 0

−𝜅 (𝑡)𝐼3 0 𝜏 (𝑡)𝐼3
0 −𝜏 (𝑡)𝐼3 0

ª®¬ ,
where 𝐼3 denotes the 3 × 3 identity matrix, the Frenet formula then corresponds to the ODE

𝛾 (𝑡)′ = 𝐴(𝑡)𝛾 (𝑡),

with
𝛾 (𝑡) = (𝑇1,𝑇2,𝑇3, 𝑁1, 𝑁2, 𝑁3, 𝐵1, 𝐵2, 𝐵3),

the Cartesian coordinates of the Frenet frame put into a single vector in R9. Therefore, given any
initial data point 𝛾 (𝑡0), by Theorem 1.24 there exists a solution to the corresponding IVP. We
choose our initial data to be

𝛾 (𝑡0) = (1, 0, 0, 0, 1, 0, 0, 0, 1),

so that the Frenet frame at 𝑡0 is the standard basis of R3.

Claim. 𝛾 (𝑡) defines an orthonormal frame at each time 𝑡 ∈ 𝐼 .

Proof of Claim. Setting 𝑇 = (𝛾1, 𝛾2, 𝛾3), 𝑁 = (𝛾4, 𝛾5, 𝛾6) and 𝐵 = (𝛾7, 𝛾8, 𝛾9), we see that

(𝑇 ·𝑇 )′ = 2𝜅 (𝑇 · 𝑁 ),
(𝑇 · 𝑁 )′ = −𝜅 (𝑇 ·𝑇 ) + 𝜏 (𝑇 · 𝐵) + 𝜅 (𝑁 · 𝑁 )
(𝑇 · 𝐵)′ = −𝜏 (𝑇 · 𝑁 ) + 𝜅 (𝑁 · 𝐵)
(𝑁 · 𝑁 )′ = −2𝜅 (𝑇 · 𝑁 ) + 2𝜏 (𝑁 · 𝐵),
(𝑁 · 𝐵)′ = −𝜅 (𝑇 · 𝐵) − 𝜏𝑁 · 𝑁 + 𝜏 (𝐵 · 𝐵),
(𝐵 · 𝐵)′ = −2𝜏 (𝑁 · 𝐵) .

Note that this linear ODE has a solution

𝑇 ·𝑇 = 𝑁 · 𝑁 = 𝐵 · 𝐵 ≡ 1, 𝑇 · 𝑁 = 𝑇 · 𝐵 = 𝑁 · 𝐵 ≡ 0,

with initial condition (1, 1, 1, 0, 0, 0). Therefore, by the uniqueness in Theorem 1.24, this is
precisely the solution 𝛾 generates of the above system. □

We currently have a Frenet frame satisfying the Frenet formula for the corresponding functions
𝜅 and 𝜏 . To generate a curve from the Frenet frame, we simply integrate it up. To be more precise,
define

𝛾 (𝑡) :=
∫ 𝑡

𝑡0

𝑇 (𝑠)𝑑𝑠, ∀𝑡 ∈ 𝐼 ,

where the integral is evaluated componentwise. By the fundamental theorem of calculus, we find
that 𝛾 has precisely the curvature 𝜅 and torsion 𝜏 required.

15
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To show uniqueness, suppose 𝛾,𝛾 : 𝐼 → R3 are two such curves. Consider their Frenet frames
{𝑇, 𝑁, 𝐵}, {𝑇, �̃� , �̃�}. Since 𝑂 (3) acts transitively on orthonormal frames, there exists 𝑀 ∈ 𝑂 (3)
such that at 𝑡0,

𝑇 = 𝑀 (𝑇 ), 𝑁 = 𝑀 (�̃� ), 𝐵 = 𝑀 (�̃�) .

Since {𝑇, 𝑁, 𝐵} and {𝑀 (𝑇 ), 𝑀 (�̃� ), 𝑀 (�̃�)} both solve the same linear ODE with the same initial
condition, by the uniqueness in Theorem 1.24, they agree on all of 𝐼 . Therefore, (𝛾 −𝑀𝛾)′ ≡ 0
and so there exists 𝑏 ∈ R3 such that

𝛾 (𝑡) = 𝑀𝛾 (𝑡) + 𝑏, ∀𝑡 ∈ 𝐼 . □

16



2 Regular Surfaces

Recall, for an open subset𝑈 ⊆ R𝑛 and a differentiable function 𝑓 : 𝑈 ⊆ R𝑛 → R𝑚, the derivative
of 𝑓 at 𝑥 ∈ 𝑈 is the linear map 𝑑 𝑓 (𝑥) : R𝑛 → R𝑚, given in Cartesian coordinates by the Jacobian
matrix

𝑑 𝑓 (𝑥) =
©«
𝜕𝑓1
𝜕𝑥1

(𝑥) · 𝜕𝑓1
𝜕𝑥𝑛

(𝑥)
...

. . .
...

𝜕𝑓𝑚
𝜕𝑥1

(𝑥) · 𝜕𝑓𝑚
𝜕𝑥𝑛

(𝑥)

ª®®®¬
Definition 2.1. For an open subset 𝑈 ⊆ R𝑛 and a differentiable function 𝑓 : 𝑈 → R𝑚, we say
that 𝑓 is an immersion if, at every point 𝑥 ∈ 𝑈 , the derivative 𝑑 𝑓 (𝑥) : R𝑛 → R𝑚 is an injective
linear map.

Example 2.2. In the case 𝑛 = 1 and𝑚 = 3, a smooth curve 𝛾 : 𝐼 → R3 is an immersion if and
only if 𝛾 ′ ≠ 0, which is precisely the definition of 𝛾 being regular.

We see that a (local) parameterisation being an immersion is the correct way to generalise
being regular to higher dimensions.

Definition 2.3. 𝑆 ⊆ R3 is a regular surface if, for every 𝑝 ∈ 𝑆 , there exists open sets𝑈 ⊆ R2 and
𝑝 ∈ 𝑉 ⊆ R3, and a smooth map 𝑋 : 𝑈 → 𝑉 ∩ 𝑆 ⊆ R3, such that

(i) 𝑋 is an immersion:

𝑑𝑋 (𝑞) : R2 → R3 is injective, for all 𝑞 ∈ 𝑈 .

(ii) 𝑋 is a homeomorphism:

𝑋 is bijective with both 𝑋 and 𝑋 −1 continuous.

The map 𝑋 : 𝑈 → 𝑉 ∩ 𝑆 is called a local parameterisation of 𝑆 , or local coordinates on 𝑆 . The
set 𝑉 ∩ 𝑆 is called a local coordinate chart on 𝑆 . That is, a regular surface is any subset 𝑆 ⊆ R3

which can be covered by local coordinate charts.

Remark.

• In constrast to curves, we have defined a regular surface as a subset of R3; this would
be equivalent to defining curves via their trace. In particular, unlike for regular curves,
regular surfaces do not have points of self-intersection.

• Our local coordinates being an immersion ensures the existence of a tangent plane at every
point on our surface.

• Requiring our local coordinates to be a homeomorphism forces every point in our surface
to have a neighbourhood which is topologically equivalent to a small neighbourhood in the
plane. This will be essential later for a consistent definition of what it means for a function
to be differentiable over a surface.
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2 Regular Surfaces

2.1 Local Graphs

The simplest examples of regular surfaces are given by a single global parameterisation.

Example 2.4. Consider the subset 𝑆 = {(𝑥,𝑦, 𝑧) ∈ R3 : 𝑧 = 𝑥2 + 𝑦2}. Letting 𝑋 : R2 → 𝑆 be the
smooth function defined by 𝑋 (𝑥,𝑦) = (𝑥,𝑦, 𝑥2 + 𝑦2), we see that

(i)

𝑑𝑋 (𝑥,𝑦) = ©«
1 0
0 1
2𝑥 2𝑦

ª®¬ ,
which has full rank, so 𝑋 is an immersion.

(ii) 𝑋 −1 : 𝑆 → R2 is given by 𝑋 −1(𝑥,𝑦, 𝑥2 + 𝑦2) = (𝑥,𝑦), which is continuous. So 𝑋 is a
homeomorphism.

Therefore, 𝑆 is a regular surface with a global parameterisation. Defining the function 𝑓 : R2 → R
by 𝑓 (𝑥,𝑦) = 𝑥2 + 𝑦2, we see that 𝑆 = Graph(𝑓 ).

In general, we see that the graph of any smooth function over an open subset of the plane lying
in R3 is a regular surface.

Lemma 2.5. Let𝑈 ⊆ R2 to an open subset and 𝑓 : 𝑈 → R be a smooth function. Then

Graph(𝑓 ) = {(𝑥,𝑦, 𝑓 (𝑥,𝑦)) ∈ R3 : (𝑥,𝑦) ∈ 𝑈 },

is a regular surface.

Proof. Define the smooth function 𝑋 : 𝑈 → Graph(𝑓 ) by 𝑋 (𝑥,𝑦) = (𝑥,𝑦, 𝑓 (𝑥,𝑦)). Then 𝑋 is a
homeomorphism with continuous inverse 𝑋 −1(𝑥,𝑦, 𝑓 (𝑥,𝑦)) = (𝑥,𝑦), and 𝑋 is an immersion with

𝑑𝑋 (𝑥,𝑦) = ©«
1 0
0 1

𝑓𝑥 (𝑥,𝑦) 𝑓𝑦 (𝑥,𝑦)

ª®¬ .
Therefore, Graph(𝑓 ) is a regular surface with a single global coordinate chart. □

Most regular surfaces do not admit a single global parameterisation like a graph does.

Example 2.6. Consider the unit sphere

S2 := {(𝑥,𝑦, 𝑧) ∈ R3 : 𝑥2 + 𝑦2 + 𝑧2 = 1}.

Setting 𝐷 = {(𝑢, 𝑣) ∈ R2 : 𝑢2 + 𝑣2 < 1} to be the unit disk in the plane, we have local charts
𝑋1, 𝑋2 : 𝐷 → R3 defined by

𝑋1(𝑢, 𝑣) = (𝑢, 𝑣,
√
1 − 𝑢2 − 𝑣2),

𝑋2(𝑢, 𝑣) = (𝑢, 𝑣,−
√
1 − 𝑢2 − 𝑣2) .
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2 Regular Surfaces

These charts cover everything on the unit sphere except for the equator. In order to cover the
entire sphere, consider the same charts under rotations of the sphere: 𝑋3, 𝑋4, 𝑋5, 𝑋6 : 𝐷 → R3

defined by

𝑋3(𝑢, 𝑣) = (𝑢,
√
1 − 𝑢2 − 𝑣2, 𝑣),

𝑋4(𝑢, 𝑣) = (𝑢,−
√
1 − 𝑢2 − 𝑣2, 𝑣),

𝑋5(𝑢, 𝑣) = (
√
1 − 𝑢2 − 𝑣2, 𝑢, 𝑣),

𝑋6(𝑢, 𝑣) = (−
√
1 − 𝑢2 − 𝑣2, 𝑢, 𝑣) .

Example 2.7. There are multiple ways to take local coordinates on a surface. Lets consider
again the sphere S2. Using spherical coordinates, we can find a chart on the sphere covering
everything but half a great circle. That is, take

𝑈 = {(𝜃, 𝜑) ∈ R2 : 𝜃 ∈ (0, 2𝜋), 𝜑 ∈ (0, 𝜋)},
𝑉 = R3 \ {(𝑥, 0, 𝑧) ∈ R3 : 𝑥 ≥ 0},

and 𝑋 : 𝑈 → 𝑉 ∩ S2 by

𝑋 (𝜃, 𝜑) = (sin𝜑 cos𝜃, sin𝜑 sin𝜃, cos𝜑) .

Checking, we find that 𝑋 is smooth with

𝜕𝑋

𝜕𝜃
= (− sin𝜑 sin𝜃, sin𝜑 cos𝜃, 0),

𝜕𝑋

𝜕𝜑
= (cos𝜑 cos𝜃, cos𝜑 sin𝜃,− sin𝜑),

which are linearly dependent iff sin𝜑 = 0 iff 𝜑 ∈ 𝜋Z. Therefore, 𝑋 is an immersion on𝑈 .

Exercise. Show that 𝑋 is a homeomorphism.

We can then perform the same trick as before of rotating the sphere to find two more charts
which completely cover the sphere.

Example 2.8. There is another very important example of a pair of charts on S2 which each
cover all of the sphere except a single point. These are known as stereographic projection.

Define the charts 𝜑1, 𝜑2 : R2 → S2 via the formulas

𝑋1(𝑢, 𝑣) =
(

2𝑢
𝑢2 + 𝑣2 + 1

,
2𝑣

𝑢2 + 𝑣2 + 1
,
𝑢2 + 𝑣2 − 1
𝑢2 + 𝑣2 + 1

)
,

𝑋2(𝑢, 𝑣) =
(

2𝑢
1 + 𝑢2 + 𝑣2 ,

2𝑣
1 + 𝑢2 + 𝑣2 ,

1 − 𝑢2 − 𝑣2
1 + 𝑢2 + 𝑣2

)
.

Exercise. Derive these formulas from the geometry and prove they define charts on S2.
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From the previous examples we see that the unit sphere is a regular surface which cannot be
represented by a single graph. However, being able to be locally represented by a graph is indeed
a characterisation of regular surfaces.

Lemma 2.9. Let 𝑆 ⊆ R3 be a regular surface and 𝑝 ∈ 𝑆 . Then there exists an open subset𝑉 ⊆ R3

with 𝑝 ∈ 𝑉 , such that 𝑆 ∩𝑉 is the graph of a function of two variables.

Proof. Fix 𝑝 ∈ 𝑆 and let 𝑋 : 𝑈 → 𝑉 ∩ 𝑆 be local coordinates on a neighbourhood of 𝑝, with
𝑞 ∈ 𝑈 such that 𝑋 (𝑞) = 𝑝. We decompose 𝑋 using Cartesian coordinates on 𝑈 and 𝑉 in the form

𝑋 (𝑢, 𝑣) = (𝑥 (𝑢, 𝑣), 𝑦 (𝑢, 𝑣), 𝑧 (𝑢, 𝑣)), ∀(𝑢, 𝑣) ∈ 𝑈 .

Since 𝑑𝑋 (𝑞) is injective, the vectors 𝜕𝑋
𝜕𝑢

(𝑞), 𝜕𝑋
𝜕𝑣

(𝑞) ∈ R3 are linearly independent. In particular,
one of the three submatrices (

𝜕𝑥
𝜕𝑢

𝜕𝑥
𝜕𝑣

𝜕𝑦

𝜕𝑢

𝜕𝑦

𝜕𝑣

)
,

(
𝜕𝑥
𝜕𝑢

𝜕𝑥
𝜕𝑣

𝜕𝑧
𝜕𝑢

𝜕𝑧
𝜕𝑣

)
,

( 𝜕𝑦
𝜕𝑢

𝜕𝑦

𝜕𝑣
𝜕𝑧
𝜕𝑢

𝜕𝑧
𝜕𝑣

)
,

must have non-zero determinant, where all three are evaluated at the point 𝑞 ∈ 𝑈 . Without loss of
generality, let us assume that the first submatrix has non-zero determinant. In particular, if we
define 𝜋 : R3 → R2 to be the projection map onto the first two coordinates 𝜋 (𝑥,𝑦, 𝑧) = (𝑥,𝑦),
then 𝜋 ◦ 𝑋 : 𝑈 → R2 has invertible derivative

𝑑 (𝜋 ◦ 𝑋 ) (𝑞) = 𝑑𝜋 (𝑋 (𝑞)) ◦ 𝑑𝑋 (𝑞) =
(
1 0 0
0 1 0

) ©«
𝜕𝑥
𝜕𝑢

𝜕𝑥
𝜕𝑣

𝜕𝑦

𝜕𝑢

𝜕𝑦

𝜕𝑣
𝜕𝑧
𝜕𝑢

𝜕𝑧
𝜕𝑣

ª®¬ =

(
𝜕𝑥
𝜕𝑢

𝜕𝑥
𝜕𝑣

𝜕𝑦

𝜕𝑢

𝜕𝑦

𝜕𝑣

)
.

By the inverse function theorem, after possibly shrinking 𝑈 and 𝑉 if necessary, there exists a
smooth inverse (𝜋 ◦ 𝑋 )−1 : 𝜋 (𝑉 ) → 𝑈 . Note that 𝜋 : 𝑉 → 𝜋 (𝑉 ) is now bijective, with

𝜋−1 = 𝑋 ◦ (𝜋 ◦ 𝑋 )−1.

Therefore, defining the function 𝑓 : 𝜋 (𝑉 ) → R to be

𝑓 (𝑥,𝑦) := 𝑧 ((𝜋 ◦ 𝑋 )−1(𝑥,𝑦)),

we have 𝑆 ∩𝑉 = Graph(𝑓 ). □

Combining Lemmas 2.5 and 2.9:

𝑆 is a regular surface iff 𝑆 is locally a graph.

Lemma 2.9 can also be helpful in showing that a given subset is not a regular surface.

Example 2.10. The cone {(𝑥,𝑦, 𝑧) ∈ R3 : 𝑧 =
√︁
𝑥2 + 𝑦2} is not a regular surface. If it were, then

in a neighbourhood of the origin, it would be a graph of a smooth function of two variables by
Lemma 2.9. Since its projection onto the {𝑥 = 0} and {𝑦 = 0} planes is not injective, it must be a
graph over the {𝑧 = 0} plane. That is, locally near (𝑥,𝑦) = (0, 0), the cone is given by the graph
of 𝑓 (𝑥,𝑦). However, it must be that 𝑓 (𝑥,𝑦) =

√︁
𝑥2 + 𝑦2 which is not smooth at the origin. So the

cone cannot be a regular surface.
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2 Regular Surfaces

The following technical lemma follows from the same idea as in the proof of Lemma 2.9. It
states that, if we know that 𝑆 is a regular surface a priori, then for a smooth immersion 𝑋 to be a
coordinate chart, we only need to check that 𝑋 is bijective - we do not need to also check that
𝑋 −1 is continuous.

Lemma 2.11. Let 𝑆 ⊆ R3 be a regular surface. If 𝑋 : 𝑈 ⊆ R2 → 𝑆 ⊆ R3 is a smooth injective
immersion, then it is a homeomorphism onto its image, and hence a coordinate chart on 𝑆 .

Proof. Fix 𝑞 ∈ 𝑈 . By the same reasoning as in the proof of Lemma 2.9, there exists open subsets
𝑉1,𝑉2 ⊆ R2 with 𝑞 ∈ 𝑉1 ⊆ 𝑈 and 𝜋 ◦ 𝑋 (𝑞) ∈ 𝑉2, such that

𝜋 ◦ 𝑋 : 𝑉1 → 𝑉2,

is a smooth diffeomorphism. Since 𝑋 is injective, it is a bijection onto its image, with

𝑋 −1 = (𝜋 ◦ 𝑋 )−1 ◦ 𝜋 : 𝑋 (𝑉1) → 𝑉1.

Therefore,𝑋 −1 is continuous at𝑋 (𝑞), and since 𝑞 was chosen arbitrarily,𝑋 −1 is a homeomorphism
onto its image as required. □

2.2 Level sets

As we saw in the previous section, the unit sphere S2 is a regular surface. One natural definition
of the unit sphere is as a level set of a smooth function. To be more precise, consider the smooth
function 𝑓 : R3 → R given by 𝑓 (𝑥) = ∥𝑥 ∥2. Note that the unit sphere (and indeed all scaled
versions of it) are level sets of 𝑓 . i.e S2 = 𝑓 −1(1), and 𝑓 −1(𝜆) is a regular surface, for all 𝜆 > 0.
However, the level set 𝑓 −1(0) = {0} ∈ R3 is not a regular surface. This leads to the following
question:

Given a smooth function 𝑓 : R3 → R, for which values 𝜆 ∈ R are the level sets 𝑓 −1(𝜆) regular
surfaces?

Definition 2.12. For an open subset𝑈 ⊆ R𝑛 and a differentiable function 𝑓 : 𝑈 → R𝑚, we say
that 𝑥 ∈ 𝑈 is a critical point of 𝑓 if the rank of the linear map 𝑑 𝑓 (𝑥) : R𝑛 → R𝑚 is not maximal.
The image of a critical point 𝑓 (𝑥) ∈ R𝑚 is called a critical value of 𝑓 . A value 𝜆 ∈ R𝑚 which is
not a critical value is called a regular value of 𝑓 . That is, 𝜆 ∈ R𝑚 is a regular value of 𝑓 if 𝑑 𝑓 (𝑥)
has maximal rank for every 𝑥 ∈ 𝑓 −1(𝜆).

Remark. In the case 𝑛 ≥ 𝑚, 𝑑 𝑓 (𝑥) having maximal rank is equivalent to 𝑑 𝑓 (𝑥) being surjective.

Lemma 2.13. Let𝑈 ⊆ R3 be an open subset and 𝑓 : 𝑈 → R be a smooth function. If 𝜆 ∈ R is a
regular value of 𝑓 , then the level set

𝑓 −1(𝜆) := {(𝑥,𝑦, 𝑧) ∈ 𝑈 : 𝑓 (𝑥,𝑦, 𝑧) = 𝜆},

is a regular surface.
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2 Regular Surfaces

Proof. Fix (𝑥0, 𝑦0, 𝑧0) ∈ 𝑓 −1(𝜆). Without loss of generality, we may assume that 𝑓𝑧 (𝑥0, 𝑦0, 𝑧0) ≠ 0.
Therefore, applying the implicit function theorem, there exists open subsets𝑈 ⊆ R2, �̃� ⊆ R, with
(𝑥0, 𝑦0) ∈ 𝑈 and 𝑧0 ∈ �̃� , and a smooth function 𝜑 : 𝑈 → �̃� with 𝜑 (𝑥0, 𝑦0) = 𝑧0, such that

𝑓 (𝑥,𝑦, 𝜑 (𝑥,𝑦)) = 𝜆, ∀(𝑥,𝑦) ∈ 𝑈 .

In particular, 𝑓 −1(𝜆) is given as the graph of the smooth function 𝜑 locally about the point
(𝑥0, 𝑦0, 𝑧0), and hence by the results of the previous section, 𝑓 −1(𝜆) is a regular surface. □

Lemma 2.13 allows us to very efficiently check if certain subsets are regular surfaces. Thanks
to Lemma 2.11, this in turns makes finding coordinate charts easier also.

Example 2.14. For the function 𝑓 = ∥·∥2, we see that

𝑓 (𝑥,𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2, 𝑑 𝑓 (𝑥,𝑦, 𝑧) = (2𝑥, 2𝑦, 2𝑧),

which is non-zero away from the origin, which lies in the zero level set. Thus, 𝑓 −1(𝜆) is a regular
surface for all 𝜆 > 0.

Example 2.15. For 𝑎, 𝑏, 𝑐 > 0 consider a variation of the previous function

𝑓 (𝑥,𝑦, 𝑧) = 𝑥2

𝑎2
+ 𝑦

2

𝑏2
+ 𝑧

2

𝑐2
, 𝑑 𝑓 (𝑥,𝑦, 𝑧) = ( 2𝑥

𝑎2
,
2𝑦
𝑏2
,
2𝑧
𝑐2

),

which is again non-zero away from the origin. Thus, the ellipsoids 𝑓 −1(𝜆) are regular surfaces
for all 𝜆 > 0.

Example 2.16. Consider the smooth function

𝑓 (𝑥,𝑦, 𝑧) = −𝑥2 + −𝑦2 + 𝑧2, 𝑑 𝑓 (𝑥,𝑦, 𝑧) = (−2𝑥,−2𝑦, 2𝑧) .

Thus, the hyperboloid of two sheets 𝑓 −1(1) is a regular surface.

Exercise. Which quadric surfaces are regular surfaces?

2.3 Surfaces of Revolution

Suppose 𝛾 : R → R2 is a smooth regular curve parameterised by arc-length. We say that 𝛾 is a
closed curve of length 𝐿 > 0 if

𝛾 (𝑠1) = 𝛾 (𝑠2) ⇐⇒ 𝑠2 − 𝑠1 ∈ 𝐿 · Z.

With respect to Cartesian coordinates, we can write 𝛾 (𝑠) = (𝑓 (𝑠), 𝑦 (𝑠)). Since the curve is closed,
after possibly translating, we may assume that 𝑓 (𝑠) > 0. We now rotate the curve about the 𝑦-axis
to generate a surface 𝑆 . That is, define the coordinate charts 𝑋,𝑌, 𝑍 : (0, 𝐿) × (0, 2𝜋) → R3, by

𝑋 (𝑠, 𝜃 ) = (𝑓 (𝑠) cos𝜃,𝑦 (𝑠), 𝑓 (𝑠) sin𝜃 ),

𝑌 (𝑠, 𝜃 ) =
(
𝑓 (𝑠 + 𝐿

3
) cos(𝜃 + 𝜋

2
), 𝑦 (𝑠 + 𝐿

3
), 𝑓 (𝑠 + 𝐿

3
) sin(𝜃 + 𝜋

2
)
)
.

𝑍 (𝑠, 𝜃 ) =
(
𝑓 (𝑠 + 2𝐿

3
) cos(𝜃 + 𝜋), 𝑦 (𝑠 + 2𝐿

3
), 𝑓 (𝑠 + 2𝐿

3
) sin(𝜃 + 𝜋)

)
.
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We note that these are smooth and cover all of 𝑆 . We now check that 𝑋 is a coordinate chart (the
arguments for 𝑌 and 𝑍 are identical). To check that 𝑋 is an immersion we calculate

𝑑𝑋 (𝑠, 𝜃 ) = ©«
𝑓 ′(𝑠) cos𝜃 −𝑓 (𝑠) sin𝜃
𝑦′(𝑠) 0

𝑓 ′(𝑠) sin𝜃 𝑓 (𝑠) cos𝜃

ª®¬ .
Note that 𝑋 fails to be an immersion if and only if at some point (𝑠, 𝜃 ), all three submatrix of
𝑑𝑋 (𝑠, 𝜃 ) have zero determinant, which is equivalent to the three equations

𝑓 (𝑠)𝑦′(𝑠) sin𝜃 = 𝑓 (𝑠)2 𝑓 ′(𝑠)2 = 𝑓 (𝑠)𝑦′(𝑠) cos𝜃 = 0.

Diving through by 𝑓 (𝑠) ≠ 0 and summing the equations together, we find that

∥𝛾 ′(𝑠)∥2 = 𝑓 ′(𝑠)2 + 𝑦′(𝑠)2 = 0,

which is a contradiction to the original curve being regular. We have shown 𝑋 is an immersion.
Next, it is clear from our choice of domain for our parameterisations that 𝑋 is bijective onto its
image. To show 𝑋 −1 is continuous, we need to show that 𝑠 and 𝜃 are continuous functions of
(𝑥,𝑦, 𝑧). We first note that 𝑠 is a continuous function of 𝑦 and

√
𝑥2 + 𝑧2, and thus 𝑠 is a continuous

function of (𝑥,𝑦, 𝑧). To check the continuity of 𝜃 , we split our argument into two cases:

(𝜃 ≠ 𝜋): In this case, we note that

tan
𝜃

2
=
2 sin 𝜃

2 cos
𝜃
2

2 cos2 𝜃2
=

sin𝜃
1 + cos𝜃

=
𝑓 (𝑠) sin𝜃

𝑓 (𝑠) + 𝑓 (𝑠) cos𝜃 =
𝑧

√
𝑥2 + 𝑧2 + 𝑥

,

and hence
𝜃 = 2 arctan

𝑧
√
𝑥2 + 𝑧2 + 𝑥

.

(𝜃 = 𝜋): We repeat the argument but for the cotangent

cot
𝜃

2
=
2 sin 𝜃

2 cos
𝜃
2

2 sin2 𝜃2
=

sin𝜃
1 − cos𝜃

=
𝑓 (𝑠) sin𝜃

𝑓 (𝑠) − 𝑓 (𝑠) cos𝜃 =
𝑧

√
𝑥2 + 𝑧2 − 𝑥

,

and hence
𝜃 = 2 arccot

𝑧
√
𝑥2 + 𝑧2 − 𝑥

.

We have shown that surfaces of revolution are regular surfaces.

Example 2.17. Take 0 < 𝑎 < 𝑏, and let 𝛾 : R → R2 be the circle centred at (𝑏, 0) of radius 𝑎

𝛾 (𝑠) := (𝑏 + 𝑎 cos 𝑠
𝑎
, sin

𝑠

𝑎
), ∀𝑠 ∈ R.

Note, this is a closed curve of length 2𝜋𝑎. Rotating about the 𝑦-axis in R3 generates a torus.
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2.4 Differentiable Functions

Consider a function 𝑓 : 𝑆 → R defined over a regular surface. Since 𝑆 admits local coordinates,
we should be able to use these coordinates to define what it means for such a function 𝑓 to be
smooth. In particular, for each coordinate chart 𝑋 : 𝑈 → 𝑆 , we could consider the function
𝑓 ◦ 𝑋 : 𝑈 → R, which is now from an open subset of the plane to the reals.

At first glance there is a problem with this idea:

What if on a different coordinate chart, the composition is not smooth?

The following lemma rules out such behaviour.

Lemma 2.18. Let 𝑆 ⊆ R3 be a regular surface and 𝑋 : 𝑈 ⊆ R2 → 𝑆 , 𝑌 : 𝑉 ⊆ R2 → 𝑆 be two
coordinate charts, with 𝑝 ∈ 𝑋 (𝑈 ) ∩ 𝑌 (𝑉 ) =𝑊 ⊆ 𝑆 . Then the change of coordinates function
ℎ : 𝑋 −1 ◦ 𝑌 : 𝑌 −1(𝑊 ) → 𝑋 −1(𝑊 ) is a smooth diffeomorphism. That is, ℎ is a smooth bijection
with smooth inverse ℎ−1.

Proof. Using property (ii) of coordinate charts, ℎ is a composition of homeomorphisms and
hence is a homeomorphism itself. We note that we cannot use the same argument to conclude that
ℎ is a diffeomorphism, as we do not yet know what it means for 𝑋 −1 to be smooth as a function
on a regular surface: 𝑋 −1 is only defined on a codimension one subset, and not on an open set of
R3.

Instead, fix 𝑟 ∈ 𝑌 −1(𝑊 ) and let 𝑞 = ℎ(𝑟 ) ∈ 𝑋 −1(𝑊 ). Again, if we write our coordinate chart

𝑋 (𝑢, 𝑣) = (𝑥 (𝑢, 𝑣), 𝑦 (𝑢, 𝑣), 𝑧 (𝑢, 𝑣)), ∀(𝑢, 𝑣) ∈ 𝑈 ,

we may assume without loss of generality, that the matrix(
𝜕𝑥
𝜕𝑢

𝜕𝑥
𝜕𝑣

𝜕𝑦

𝜕𝑢

𝜕𝑦

𝜕𝑣

)
,

is invertible at 𝑞.

We now find an invertible extension of 𝑋 −1 defined on a cylindrical neighbourhood over 𝑆 at
𝑋 (𝑞). More precisely, we define 𝑋 : 𝑈 × R → R3 via

𝑋 (𝑢, 𝑣, 𝑡) := 𝑋 (𝑢, 𝑣) + (0, 0, 𝑡) ∈ R3, ∀𝑡 ∈ R.

Since

det(𝑑𝑋 (𝑞, 0)) = det
(
𝜕𝑥
𝜕𝑢

𝜕𝑥
𝜕𝑣

𝜕𝑦

𝜕𝑢

𝜕𝑦

𝜕𝑣

)
≠ 0,

by the inverse function theorem, there exists an open set �̃� ⊆ R3 containing 𝑋 (𝑞, 0) = 𝑋 (𝑞), an
open set �̃� ⊆ 𝑈 containing 𝑞, 𝛿 > 0, and a smooth inverse

𝑋 −1 : �̃� → �̃� × (−𝛿, 𝛿).
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As 𝑌 (𝑟 ) = 𝑋 (𝑞) ∈ �̃� , by the continuity of 𝑌 , there exists an open neighbourhood 𝑟 ∈ 𝑁 ⊆ 𝑉

such that 𝑌 (𝑁 ) ⊆ �̃� . Therefore we may write

ℎ |𝑁 = 𝑋 −1 ◦ 𝑌 |𝑁 ,

and by the composition of smooth functions, we can conclude that ℎ is smooth at 𝑟 ∈ 𝑁 . Since 𝑟
was arbitrary, ℎ is smooth on 𝑌 −1(𝑊 ). Repeating the exact same argument but swapping 𝑋 and
𝑌 , we conclude that ℎ−1 is smooth on 𝑋 −1(𝑊 ). □

Remark. The proof of Lemma 2.18 relies heavily on assumption (ii) in our definition of a
coordinate chart. Without the homeomorphism assumption, the lemma would fail and the
subsequent definition would not be consistent.

Definition 2.19. Let 𝑆 ⊆ R3 be a regular surface and 𝑓 : 𝑆 → R a function. 𝑓 is said to be
smooth at 𝑝 ∈ 𝑆 if, for some coordinate chart 𝑋 : 𝑈 ⊆ R2 → 𝑉 ∩ 𝑆 ⊆ R3, with 𝑝 ∈ 𝑉 , the
composition 𝑓 ◦ 𝑋 : 𝑈 → R to smooth at 𝑋 −1(𝑝). We say that 𝑓 is smooth if 𝑓 is smooth at every
𝑝 ∈ 𝑆 .

Remark. Using Lemma 2.18, we see that the definition is independent of the coordinate chart
chosen. Thus, in the definition above, we could equivalently require that 𝑓 ◦ 𝑋 is smooth at
𝑋 −1(𝑝) for every coordinate chart about 𝑝.

Example 2.20. Let 𝑆 ⊆ R3 be a regular surface and 𝑂 ⊆ R3 be an open subset with 𝑆 ⊆ 𝑂 .
Suppose 𝑓 : 𝑂 ⊆ R3 → R is a smooth function in the usual sense. It follows from the composition
of smooth functions that 𝑓 ◦𝑋 is smooth for any coordinate chart𝑋 on 𝑆 , and hence the restriction
𝑓 |𝑆 is a smooth function on 𝑆 .

Example 2.21. Fix 𝑣 ∈ R3 and consider the smooth function 𝑓 : R3 → 𝑅, given by 𝑓 (𝑥) = ⟨𝑥, 𝑣⟩.
We call 𝑓 a height function, as it measures the perpendicular distance from the plane with normal
vector 𝑣 . For any regular surface 𝑆 , the restriction 𝑓 |𝑆 is a smooth function on 𝑆 by Example 2.20.

Example 2.22. Fix 𝑥0 ∈ R3 and consider the smooth function 𝑓 : R3 → 𝑅, given by 𝑓 (𝑥) =

∥𝑥 − 𝑥0∥2. 𝑓 is the distance (squared) function from the point 𝑥0. Again, for any regular surface
𝑆 , the restriction 𝑓 |𝑆 is a smooth function on 𝑆 by Example 2.20.

Our definition of smooth functions from a surface to the reals can easily be extended to
functions between surfaces.

Definition 2.23. Let 𝑆1, 𝑆2 ⊆ R3 be a pair of regular surfaces and 𝑓 : 𝑆1 → 𝑆2. 𝑓 is said to be
smooth at 𝑝 ∈ 𝑆1 if there exists a pair of coordinate charts𝑋1 : 𝑈1 → 𝑉1∩𝑆1 and𝑋2 : 𝑈2 → 𝑉2∩𝑆2
about 𝑝 and 𝑓 (𝑝) respectively, such that the composition

𝑋 −1
2 ◦ 𝑓 ◦ 𝑋1 : 𝑈1 → 𝑈2,

is a smooth function at 𝑋 −1
1 (𝑝). 𝑓 is smooth if 𝑓 is smooth at every 𝑝 ∈ 𝑆1.

Definition 2.24. Let 𝑆1, 𝑆2 ⊆ R3 be a pair of regular surfaces. A diffeomorphism between 𝑆1 and
𝑆2 is a smooth bijection 𝑓 : 𝑆1 → 𝑆2 with a smooth inverse 𝑓 −1 : 𝑆2 → 𝑆1. If a diffeomorphism
between two surfaces exists, we say that 𝑆1 is diffeomorphic to 𝑆2, and denote this by 𝑆1 � 𝑆2.
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2 Regular Surfaces

Example 2.25. If 𝑆 ⊆ R3 is a regular surface and 𝑋 : 𝑈 → 𝑆 is a coordinate chart on 𝑆 , then
Lemma 2.18 implies that 𝑋 −1 : 𝑋 (𝑈 ) → 𝑈 is smooth, and hence 𝑈 � 𝑋 (𝑈 ) for any coordinate
chart.

Remark. The previous example leads to the following characterisation of regular surfaces:

𝑆 ⊆ R3 is a regular surface if and only if it is locally diffeomorphic to R2.

2.5 Tangent Planes

Definition 2.26. Let 𝑆 ⊆ R3 be a regular surface and 𝑝 ∈ 𝑆 . A tangent vector to 𝑆 at 𝑝 is a vector
𝛾 ′(0) ∈ R3, where 𝛾 : (−𝜖, 𝜖) → 𝑆 is a smooth curve in 𝑆 , with 𝛾 (0) = 𝑝. The collection of all
tangent vectors to 𝑆 at 𝑝 is called the tangent plane of 𝑆 at 𝑝, denoted by 𝑇𝑝𝑆 ⊆ R3.

Lemma 2.27. Suppose 𝑋 : 𝑈 → 𝑆 is a coordinate chart on a regular surface 𝑆 . Then

𝑇𝑋 (𝑞)𝑆 = Im(𝑑𝑋 (𝑞)), ∀𝑞 ∈ 𝑈 .

Remark. Since coordinate charts are immersions, the above lemma implies that the tangent space
𝑇𝑝𝑆 is a well-defined two-dimensional subspace of R3. Moreover, the plane Im(𝑑𝑋 (𝑋 −1(𝑝))) is
independent of the coordinate chart 𝑋 .

Proof. If 𝑤 ∈ 𝑇𝑋 (𝑞)𝑆 , then there exists 𝜖 > 0 and a smooth curve 𝛾 : (−𝜖, 𝜖) → 𝑋 (𝑈 ) ⊆ 𝑆 with
𝛾 (0) = 𝑋 (𝑞) and 𝛾 ′(0) = 𝑤 . By definition, the curve 𝜂 := 𝑋 −1 ◦ 𝛾 : (−𝜖, 𝜖) → 𝑈 is smooth with
𝜂 (0) = 𝑞, and therefore, by the chain rule

𝑤 = 𝛾 ′(0) = (𝑋 ◦ 𝜂)′(0) = 𝑑𝑋 (𝑞) · 𝜂′(0) ∈ Im(𝑑𝑋 (𝑞)) .

On the other hand, given 𝑞 ∈ 𝑈 and 𝑣 ∈ R2, consider the curve 𝜂 : (−𝜖, 𝜖) → 𝑈 defined by

𝜂 (𝑡) = 𝑞 + 𝑡𝑣, ∀𝑡 ∈ (−𝜖, 𝜖) .

Then, 𝛾 := 𝑋 ◦ 𝜂 : (−𝜖, 𝜖) → 𝑆 is a smooth curve with 𝛾 (0) = 𝑋 (𝑞), and therefore

𝑑𝑋 (𝑞) · 𝑣 = 𝑑𝑋 (𝜂 (0)) · 𝜂′(0) = (𝑋 ◦ 𝜂)′(0) = 𝛾 ′(0) ∈ 𝑇𝑋 (𝑞)𝑆. □

Given local coordinates 𝑋 : 𝑈 → 𝑆 on a neighbourhood of 𝑝 ∈ 𝑆 , writing an element of the do-
main as (𝑢1, 𝑢2) ∈ 𝑈 in Cartesian coordinates, if 𝑞 = 𝑋 −1(𝑝), we generate a basis { 𝜕𝑋

𝜕𝑢1
(𝑞), 𝜕𝑋

𝜕𝑢2
(𝑞)}

of the tangent space 𝑇𝑝𝑆 called the basis associated with 𝑋 . We use the shorthand {𝑋1(𝑞), 𝑋2(𝑞)}
for this basis.

Given a vector𝑤 ∈ 𝑇𝑝𝑆 , there is a smooth curve 𝛾 : (−𝜖, 𝜖) → 𝑆 with 𝛾 (0) = 𝑝 and 𝛾 ′(0) = 𝑤 .
The curve 𝜂 := 𝑋 −1 ◦ 𝛾 : (−𝜖, 𝜖) → 𝑈 is then a representation of 𝛾 with respect to the coordinate
chart 𝑋 , given by 𝜂 (𝑡) = (𝑢1(𝑡), 𝑢2(𝑡)), with 𝜂 (0) = 𝑞. Therefore,

𝛾 ′(0) = (𝑋 ◦ 𝜂)′(0)

=
𝑑

𝑑𝑡
𝑋 (𝑢1(𝑡), 𝑢2(𝑡)) |𝑡=0

= 𝑋1(𝑞)𝑢′1(0) + 𝑋2(𝑞)𝑢′2(0) = 𝑤.
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2 Regular Surfaces

That is, in the basis {𝑋1(𝑞), 𝑋2(𝑞)}, 𝑤 has coordinates (𝑢′1(0), 𝑢′2(0)), where (𝑢1(𝑡), 𝑢2(𝑡)) is a
parameterisation of the tangent curve 𝛾 with respect to the local coordinate chart 𝑋 .

Consider now a smooth function 𝑓 : 𝑆1 → 𝑆2 between regular surfaces. Again, for 𝑝 ∈ 𝑆1
and 𝑤 ∈ 𝑇𝑝𝑆1, let 𝛾 : (−𝜖, 𝜖) → 𝑆1 be a smooth curve with 𝛾 (0) = 𝑝 and 𝛾 ′(0) = 𝑤 . Note that
that composition 𝑓 ◦ 𝛾 : (−𝜖, 𝜖) → 𝑆2 is a smooth curve in 𝑆2 with 𝑓 ◦ 𝛾 (0) = 𝑓 (𝑝), and so the
derivative of this curve at zero should give a tangent vector in 𝑇𝑓 (𝑝 )𝑆2. If we could apply the
chain rule, then this tangent vector should be equal to the image of𝑤 under the derivative of 𝑓 at
𝑝. We therefore make the following definition.

Definition 2.28. Suppose 𝑆1, 𝑆2 ⊆ R3 are regular surfaces and 𝑓 : 𝑆1 → 𝑆2 a smooth function.
For each 𝑝 ∈ 𝑆1, define the derivative of 𝑓 at 𝑝 to be the map 𝑑 𝑓 (𝑝) : 𝑇𝑝𝑆1 → 𝑇𝑓 (𝑝 )𝑆2 given by
the formula

𝑑 𝑓 (𝑝) ·𝑤 := (𝑓 ◦ 𝛾𝑤)′(0), ∀𝑤 ∈ 𝑇𝑝𝑆1,
where 𝛾𝑤 : (−𝜖, 𝜖) → 𝑆1 denotes a smooth curve with 𝛾𝑤 (0) = 𝑝 and 𝛾 ′𝑤 (0) = 𝑤 .

Before we can be confident in our definition, we need to check that the derivative (𝑓 ◦ 𝛾𝑤)′(0)
used in the definition is independent of our choice of curve 𝛾𝑤 , and instead only depends on the
choice of tangent vector𝑤 . This is the content of the following lemma.

Lemma 2.29. Let 𝑆1, 𝑆2 ⊆ R3 be a pair of regular surfaces, 𝑓 : 𝑆1 → 𝑆2 a smooth function and
𝑝 ∈ 𝑆1. Then the derivative of 𝑓 at 𝑝 given above is a well-defined linear map.

Proof. Choose 𝑋 : 𝑈 → 𝑆1 and 𝑌 : 𝑉 → 𝑆2 to be coordinate charts about the points 𝑝 and 𝑓 (𝑝)
respectively. With respect to these coordinates, we can write

𝑓 (𝑢1, 𝑢2) = (𝑓1(𝑢1, 𝑢2)︸    ︷︷    ︸
𝑣1

, 𝑓2(𝑢1, 𝑢2)︸    ︷︷    ︸
𝑣2

), ∀(𝑢1, 𝑢2) ∈ 𝑈 ,

and 𝛾𝑤 (𝑡) = (𝑢1(𝑡), 𝑢2(𝑡)). If 𝑞 = 𝑋 −1(𝑝) ∈ 𝑈 and 𝑟 = 𝑌 −1(𝑓 (𝑝)) ∈ 𝑉 , with respect to the basis
{𝑋1(𝑞), 𝑋2(𝑞)} we have 𝑤 = (𝑢′1(0), 𝑢′2(0)). Moreover, with respect to the basis {𝑌1(𝑟 ), 𝑌2(𝑟 )}
we have

(𝑓 ◦ 𝛾𝑤)′(0) =
𝑑

𝑑𝑡
(𝑓1(𝑢1(𝑡), 𝑢2(𝑡)), 𝑓2(𝑢1(𝑡), 𝑢2(𝑡))) |𝑡=0

= ( 𝜕𝑓1
𝜕𝑢1

(𝑞) · 𝑢′1(0) +
𝜕𝑓1

𝜕𝑢2
(𝑞) · 𝑢′2(0),

𝜕𝑓2

𝜕𝑢1
(𝑞) · 𝑢′1(0) +

𝜕𝑓2

𝜕𝑢2
(𝑞) · 𝑢′2(0))

=

(
𝜕𝑓1
𝜕𝑢1

(𝑞) 𝜕𝑓1
𝜕𝑢2

(𝑞)
𝜕𝑓2
𝜕𝑢1

(𝑞) 𝜕𝑓2
𝜕𝑢2

(𝑞)

) (
𝑢′1(0)
𝑢′2(0)

)
.

The formula above demonstrates that (𝑓 ◦ 𝛾)′(0) depends only on𝑤 = (𝑢′1(0), 𝑢′2(0)). Moreover,
with respect to our bases {𝑋1(𝑞), 𝑋2(𝑞)} on 𝑇𝑝𝑆1 and {𝑌1(𝑟 ), 𝑌2(𝑟 )} on 𝑇𝑓 (𝑝 )𝑆2, we can rewrite
our definition in the form

𝑑 𝑓 (𝑝) ·
(
𝑤1
𝑤2

)
=

(
𝜕𝑓1
𝜕𝑢1

𝜕𝑓1
𝜕𝑢2

𝜕𝑓2
𝜕𝑢1

𝜕𝑓2
𝜕𝑢2

)�����
𝑞

(
𝑤1
𝑤2

)
,

for all𝑤 = (𝑤1,𝑤2). In particular, 𝑑 𝑓 (𝑝) is linear. □
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3 Geometry of Surfaces

Now that we have the basic definitions under our belt, we may begin to study the geometric
properties of a regular surface.

In R3, the notion of distances and angles is given by the standard dot-product. We also used
the dot product at each point in R3 to define lengths of curves: recall that, given a smooth regular
curve 𝛾 : 𝐼 → R3, its arc-length over some compact interval [𝑎, 𝑏] ⊆ 𝐼 is given by the formula

𝐿(𝛾 | [𝑎,𝑏 ]) =
∫ 𝑏

𝑎

∥𝛾 ′(𝑡)∥𝑑𝑡 =
∫ 𝑏

𝑎

⟨𝛾 ′(𝑡), 𝛾 ′(𝑡)⟩
1
2 𝑑𝑡 .

At every point of our curve 𝛾 (𝑡), we look at the size of the vector 𝛾 ′(𝑡) using the dot-product on
R3, and integrate this value over the domain.

3.1 First Fundamental Form

We want the intrinsic geometry of a regular surface 𝑆 ⊆ R3 to be inherited from the geometry of
its ambient space. More precisely, given any smooth regular curve 𝛾 : 𝐼 → 𝑆 , we require that its
arc-length inside of 𝑆 is the same as if we measured it as a curve inside of R3. As such, we see
that for each 𝑝 ∈ 𝑆 , the tangent plane 𝑇𝑝𝑆 inherits a natural inner-product ⟨·, ·⟩𝑝 as a subspace of
R3.

Definition 3.1. Let 𝑆 ⊆ R3 be a regular surface. For each 𝑝 ∈ 𝑆 , we define the first fundamental
form of 𝑆 at 𝑝 to be the non-degenerate quadratic form 𝑔𝑝 : 𝑇𝑝𝑆 → [0,∞), given by

𝑔𝑝 (𝑣) := 𝑣 · 𝑣, ∀𝑣 ∈ 𝑇𝑝𝑆.

Remark.

• The first fundamental form is non-denegerate in the sense that 𝑔𝑝 (𝑣) = 0 if and only if
𝑣 = 0.

• The quadratic form uniquely determines a non-degenerate symmetric bilinear form 𝑇𝑝𝑆 ×
𝑇𝑝𝑆 → R, also denoted by 𝑔𝑝 , via the formula

𝑔𝑝 (𝑣,𝑤) := 1
2

(
𝑔𝑝 (𝑣 +𝑤) − 𝑔𝑝 (𝑣) − 𝑔𝑝 (𝑤)

)
, ∀𝑣,𝑤 ∈ 𝑇𝑝𝑆. (3.1)

• Notice that all of the intrinsic information of the surface (i.e lengths of curves, angles of
tangent vectors, areas of regions) is captured by the first fundamental form.
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3 Geometry of Surfaces

Suppose 𝑋 : 𝑈 → 𝑆 is a coordinate chart on a neighbourhood of 𝑝 ∈ 𝑆 , with 𝑞 = 𝑋 −1(𝑝) ∈ 𝑈 .
For any tangent vector 𝑣 ∈ 𝑇𝑝𝑆 , there exists a smooth curve 𝛾 : (−𝜖, 𝜖) → 𝑈 such that

𝑋 ◦ 𝛾 (0) = 𝑝, (𝑋 ◦ 𝛾)′(0) = 𝑣 .

Writing 𝛾 (𝑡) = (𝑢1(𝑡), 𝑢2(𝑡)), we find that

𝑔𝑝 (𝑣) = (𝑋 ◦ 𝛾)′(0) · (𝑋 ◦ 𝛾)′(0)
=

〈
𝑋1(𝑞)𝑢′1(0) + 𝑋2(𝑞)𝑢′2(0), 𝑋1(𝑞)𝑢′1(0) + 𝑋2(𝑞)𝑢′2(0)

〉
𝑝

= ⟨𝑋1, 𝑋1⟩𝑝 𝑢′1(0)2 + 2 ⟨𝑋1, 𝑋2⟩𝑝 𝑢′1(0)𝑢′2(0) + ⟨𝑋2, 𝑋2⟩𝑝 𝑢′2(0)2.

In particular, if we let {𝑋1(𝑞), 𝑋2(𝑞)} be the basis of 𝑇𝑝𝑆 associated with 𝑋 , then 𝑔𝑝 can be
expressed with respect to this basis as the symmetric matrix

𝑔𝑝 =

(
⟨𝑋1, 𝑋1⟩𝑝 ⟨𝑋1, 𝑋2⟩𝑝
⟨𝑋2, 𝑋1⟩𝑝 ⟨𝑋2, 𝑋2⟩𝑝

)
=:

(
𝑔11(𝑝) 𝑔12(𝑝)
𝑔21(𝑝) 𝑔22(𝑝)

)
,

so that if 𝑣 = (𝑣1, 𝑣2) with respect to this basis, then our equation becomes

𝑔𝑝 (𝑣) = 𝑔11𝑣21 + 2𝑔12𝑣1𝑣2 + 𝑔22𝑣22 =
(
𝑣1
𝑣2

)𝑇 (
𝑔11 𝑔12
𝑔21 𝑔22

)����
𝑝

(
𝑣1
𝑣2

)
.

This local expression for 𝑔 can now be used to calculate the length of curves in 𝑆 using only
local coordinates. That is, suppose 𝛾 : 𝐼 → 𝑆 is a smooth regular curve in 𝑆 . Let [𝑎, 𝑏] ⊆ 𝐼 and
𝑋 : 𝑈 → 𝑆 be local coordinates on 𝑆 such that 𝛾 ( [𝑎, 𝑏]) ⊆ 𝑋 (𝑈 ). Then, if we write

𝛾 (𝑡) = 𝑋 (𝑢1(𝑡), 𝑢2(𝑡)), ∀𝑡 ∈ [𝑎, 𝑏],

we find that

𝐿(𝛾 | [𝑎,𝑏 ]) =
∫ 𝑏

𝑎

∥𝛾 ′(𝑡)∥𝑑𝑡

=

∫ 𝑏

𝑎

𝑔𝛾 (𝑡 ) (𝛾 ′(𝑡))
1
2𝑑𝑡

=

∫ 𝑏

𝑎

(
2∑︁

𝑖, 𝑗=1
𝑔𝑖 𝑗 (𝛾 (𝑡)) · 𝑢′𝑖 (𝑡)𝑢′𝑗 (𝑡)

) 1
2

𝑑𝑡 .

Example 3.2. Consider an affine plane 𝑃 ⊆ R3 with a global parameterisation 𝑋 : R2 → 𝑃 given
explicitly by

𝑋 (𝑢1, 𝑢2) = 𝑥 + 𝑢1𝑤1 + 𝑢2𝑤2, ∀(𝑢1, 𝑢2) ∈ R2,

where 𝑥 ∈ R3 and𝑤1,𝑤2 ∈ R3 are orthonormal vectors.

At any point 𝑝 ∈ 𝑃 , we see that 𝑋1 = 𝑤1 and 𝑋2 = 𝑤2. Therefore, our first fundamental form is
given in this parameterisation by the identity matrix everywhere

𝑔 =

(
𝑔11 𝑔12
𝑔21 𝑔22

)
=

(
1 0
0 1

)
.
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3 Geometry of Surfaces

Example 3.3. Consider the cylinder 𝐶 ⊆ R3 with cross-section the unit circle {(𝑥,𝑦) ∈ R2 :
𝑥2 + 𝑦2 = 1}. The cylinder admits a coordinate chart 𝑋 : (0, 2𝜋) × R → 𝐶 given by

𝑋 (𝑢1, 𝑢2) = (cos𝑢1, sin𝑢1, 𝑢2) ∀(𝑢1, 𝑢2) ∈ (0, 2𝜋) × R.

Notice that
𝑋1 = (− sin𝑢1, cos𝑢1, 0), 𝑋2 = (0, 0, 1).

Therefore,

𝑔 =

(
𝑔11 𝑔12
𝑔21 𝑔22

)
=

(
1 0
0 1

)
,

and the first fundamental form is also given by the identity matrix.

Example 3.4. For 𝛽 > 0, consider the helix (as in Example 1.3 with 𝛼 = 1)

𝛾 (𝑡) = (cos 𝑡, sin 𝑡, 𝛽𝑡), ∀𝑡 ∈ R.

For each 𝑡 ∈ R, consider the line parallel to the plane {𝑧 = 0} connecting the point 𝛾 (𝑡) and the
𝑧-axis. The surface this generates 𝐻 is called a helicoid, and admits a global coordinate chart
𝑋 : 𝑈 = R2 → 𝐻 given by

𝑋 (𝑢1, 𝑢2) = (𝑢1 cos𝑢2, 𝑢1 sin𝑢2, 𝛽𝑢2), ∀(𝑢1, 𝑢2) ∈ 𝑈 .

Exercise. Show that 𝐻 is a regular surface for any 𝛽 > 0.

Since 𝑋1 = (cos𝑢2, sin𝑢2, 0) and 𝑋2 = (−𝑢1 sin𝑢2, 𝑢1 cos𝑢2, 𝛽), we see that the first fundamen-
tal form is given in these coordinates by

𝑔 =

(
𝑔11 𝑔12
𝑔21 𝑔22

)
=

(
1 0
0 𝑢21 + 𝛽2

)
,

The curve 𝛾 : R → 𝑈 defined in our coordinate system by 𝛾 (𝑡) = (𝛼, 𝑡) will map under 𝑋 to a
curve which has trace the helix with parameters 𝛼 and 𝛽. Since 𝑢′1 = 0 and 𝑢′2 = 1, using the first
fundamental form, we find its length to be

𝐿(𝛾 | [𝑎,𝑏 ]) =
∫ 2𝜋

0

√︁
𝑔22(𝛼, 𝑡) =

∫ 2𝜋

0

√︁
𝛼2 + 𝛽2 = 2𝜋

√︁
𝛼2 + 𝛽2,

as expected.

Example 3.5. Recall from Example 2.7, the unit sphere S2 admits a coordinate chart 𝑋 : 𝑈 =

(0, 𝜋) × (0, 2𝜋) → S2 given by spherical coordinates

𝑋 (𝑢1, 𝑢2) = (sin𝑢1 cos𝑢2, sin𝑢1 sin𝑢2, cos𝑢1), ∀(𝑢1, 𝑢2) ∈ 𝑈 .

Since

𝑋1(𝑢1, 𝑢2) = (cos𝑢1 cos𝑢2, cos𝑢1 sin𝑢2,− sin𝑢1),
𝑋2(𝑢1, 𝑢2) = (− sin𝑢1 sin𝑢2, sin𝑢1 cos𝑢2, 0),
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3 Geometry of Surfaces

it follows that the first fundamental form in this coordinate chart is given by

𝑔 =

(
𝑔11 𝑔12
𝑔21 𝑔22

)
=

(
1 0
0 sin2𝑢1

)
.

Consider the two curves 𝛾, 𝜂 : (−𝜖, 𝜖) → 𝑈 given by

𝜂 (𝑡) = (𝑐, 𝜋 + 𝑡), 𝛾 (𝑡) = (𝑐 + 𝑡, 𝜋 + 𝑡),

for some constant 𝑐 ∈ (0, 𝜋). Note that, with respect to the basis {𝑋1(𝑐, 𝜋), 𝑋2(𝑐, 𝜋)}, we have

𝜂′(0) = (0, 1), 𝛾 ′(0) = (1, 1), 𝑔(𝑐,𝜋 ) =

(
1 0
0 sin2 𝑐

)
.

and so we have

𝑔(𝑐,𝜋 ) (𝜂′(0)) = sin2 𝑐, 𝑔(𝑐,𝜋 ) (𝛾 ′(0)) = 1 + sin2(𝑐), 𝑔(𝑐,𝜋 ) (𝜂′(0), 𝛾 ′(0)) = sin2(𝑐),

from which we see that the angle between the curves is given by

𝜃 = arccos

(
𝑔(𝑐,𝜋 ) (𝜂′(0), 𝛾 ′(0))

𝑔(𝑐,𝜋 ) (𝜂′(0))
1
2 𝑔(𝑐,𝜋 ) (𝛾 ′(0))

1
2

)
= arccos

(
sin 𝑐

√
1 + sin2 𝑐

)
.

Example 3.6. Let𝑈 ⊆ R2 be an open subset and 𝑓 : 𝑈 → R a smooth function. In Lemma 2.5
we showed that Graph(𝑓 ) is a regular surface with global coordinates

𝑋 (𝑢1, 𝑢2) = (𝑢1, 𝑢2, 𝑓 (𝑢1, 𝑢2)), ∀(𝑢1, 𝑢2) ∈ 𝑈 .

As 𝑋1 = (1, 0, 𝑓1) and 𝑋2 = (0, 1, 𝑓2), the first fundamental form is given in these coordinates by

𝑔 =

(
𝑔11 𝑔12
𝑔21 𝑔22

)
=

(
1 + 𝑓 21 𝑓1 𝑓2
𝑓1 𝑓2 1 + 𝑓 22

)
.

3.2 Area

As well as length of curves in our surface, our first fundamental form can also be used to find the
area of subsets within a regular surface.

Let 𝑋 : 𝑈 → 𝑆 be a coordinate chart on 𝑆 about a point 𝑝 ∈ 𝑆 , and consider the deriva-
tive 𝑑𝑋 (𝑞) : R2 → 𝑇𝑝𝑆 , where 𝑞 = 𝑋 −1(𝑝). Note that 𝑑𝑋 (𝑞) maps the standard basis vectors
𝑒1 = (1, 0), 𝑒2 = (0, 1) to the vectors 𝑋1(𝑞), 𝑋2(𝑞) ∈ 𝑇𝑝𝑆 respectively.

As such, the image of the unit square spanned by 𝑒1 and 𝑒2 is mapped to the parallelogram
spanned by 𝑋1(𝑞), 𝑋2(𝑞), which has area ∥𝑋1(𝑞) × 𝑋2(𝑞)∥, and thus, the infinitesimal area of our
surface is given in the local coordinates 𝑋 by the formula

𝑑𝐴 = ∥𝑋1(𝑞) × 𝑋2(𝑞)∥𝑑𝑢1𝑑𝑢2.
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3 Geometry of Surfaces

Suppose Ω ⊂ 𝑋 (𝑈 ) ⊆ 𝑆 is a compact subset within our coordinate chart, or equivalently,
𝑋 −1(Ω) is a compact subset of𝑈 . Consider the integral of our infinitesimal area over this region∫

(𝑢1,𝑢2 ) ∈𝑋 −1 (Ω)
∥𝑋1(𝑢1, 𝑢2) × 𝑋2(𝑢1, 𝑢2)∥𝑑𝑢1𝑑𝑢2.

We now show that this integral is independent of the choice of coordinate chart 𝑋 .

Suppose 𝑋 : 𝑈 → 𝑆 and 𝑌 : 𝑉 → 𝑆 are a pair of coordinate charts on 𝑆 , and that without loss
of generality, 𝑋 (𝑈 ) = 𝑌 (𝑉 ) as subsets of 𝑆 . Given coordinates (𝑢1, 𝑢2) ∈ 𝑈 and (𝑣1, 𝑣2) ∈ 𝑉 , we
can consider the change of coordinate map ℎ := 𝑌 −1 ◦ 𝑋 : 𝑈 → 𝑉 to be the expression

ℎ(𝑢1, 𝑢2) = (𝑣1(𝑢1, 𝑢2), 𝑣2(𝑢1, 𝑢2)), ∀(𝑢1, 𝑢2) ∈ 𝑈 .

Fix 𝑞 ∈ 𝑈 and 𝑟 ∈ 𝑉 so that 𝑋 (𝑞) = 𝑌 (𝑟 ). Since 𝑋 = 𝑌 ◦ ℎ, we can apply the chain rule to find
that

𝑋1(𝑞) = 𝑑𝑋 (𝑞) · 𝑒1
= 𝑑𝑌 (𝑟 ) · 𝑑ℎ(𝑞) · 𝑒1

= 𝑑𝑌 (𝑟 ) ·
(
𝜕𝑣1
𝜕𝑢1

𝜕𝑣1
𝜕𝑢2

𝜕𝑣2
𝜕𝑢1

𝜕𝑣2
𝜕𝑢2

) (
1
0

)
=

©«
| |

𝑌1(𝑟 ) 𝑌2(𝑟 )
| |

ª®¬
(
𝜕𝑣1
𝜕𝑢1
𝜕𝑣2
𝜕𝑢1

)
=
𝜕𝑣1

𝜕𝑢1
(𝑞)𝑌1(𝑟 ) +

𝜕𝑣2

𝜕𝑢1
(𝑞)𝑌2(𝑟 ) .

Similarly, we find that

𝑋2(𝑞) =
𝜕𝑣1

𝜕𝑢2
(𝑞)𝑌1(𝑟 ) +

𝜕𝑣2

𝜕𝑢2
(𝑞)𝑌2(𝑟 ) .

Therefore, their cross product satisfies

𝑋1 × 𝑋2 =

(
𝜕𝑣1

𝜕𝑢1
𝑌1 +

𝜕𝑣2

𝜕𝑢1
𝑌2

)
×

(
𝜕𝑣1

𝜕𝑢2
𝑌1 +

𝜕𝑣2

𝜕𝑢2
𝑌2

)
=
𝜕𝑣1

𝜕𝑢1
𝑌1 ×

𝜕𝑣2

𝜕𝑢2
𝑌2 +

𝜕𝑣2

𝜕𝑢1
𝑌2 ×

𝜕𝑣1

𝜕𝑢2
𝑌1

=

(
𝜕𝑣1

𝜕𝑢1

𝜕𝑣2

𝜕𝑢2
− 𝜕𝑣2

𝜕𝑢1

𝜕𝑣1

𝜕𝑢2

)
𝑌1 × 𝑌2

= det(𝑑ℎ) · 𝑌1 × 𝑌2,
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3 Geometry of Surfaces

and by the change of variable formula for multi-variable integration, we have∫
(𝑢1,𝑢2 ) ∈𝑋 −1 (Ω)

∥𝑋1(𝑢1, 𝑢2) × 𝑋2(𝑢1, 𝑢2)∥𝑑𝑢1𝑑𝑢2

=

∫
(𝑢1,𝑢2 ) ∈𝑋 −1 (Ω)

∥𝑌1(𝑣1, 𝑣2) × 𝑌2(𝑣1, 𝑣2)∥ |det𝑑ℎ(𝑢1, 𝑢2) | 𝑑𝑢1𝑑𝑢2

=

∫
(𝑣1,𝑣2 ) ∈𝑌 −1 (Ω)

∥𝑌1(𝑣1, 𝑣2) × 𝑌2(𝑣1, 𝑣2)∥𝑑𝑣1𝑑𝑣2.

We have shown that the infinitesimal area form 𝑑𝐴 is independent of the choice of coordinate
chart. In fact, it can be expressed purely in terms of the first fundamental form

∥𝑋1(𝑞) × 𝑋2(𝑞)∥ =
√︃
∥𝑋1(𝑞)∥2∥𝑋2(𝑞)∥2 − ⟨𝑋1(𝑞), 𝑋2(𝑞)⟩2

=
√
𝑔11𝑔22 − 𝑔12𝑔21

=

√︃
det𝑔𝑝 ,

and hence
𝑑𝐴 =

√︃
det𝑔(𝑢1,𝑢2 )𝑑𝑢1𝑑𝑢2.

Definition 3.7. Let 𝑆 ⊆ R3 be a regular surface, 𝑋 : 𝑈 → 𝑆 be local coordinates on 𝑆 , and
Ω ⊆ 𝑋 (𝑈 ) be a compact subset of 𝑆 lying in the image of the coordinate chart 𝑋 . Then the
integral ∫

Ω
𝑑𝐴 :=

∫
(𝑢1,𝑢2 ) ∈𝑋 −1 (Ω)

√︃
det𝑔(𝑢1,𝑢2 )𝑑𝑢1𝑑𝑢2,

is a well-defined (independent of coordinate chart) non-negative real number known as the area
of Ω.

Remark. Although we have only defined the area of subsets contained within a single coordinate
chart, for a general subset, we can simply decompose the subset into a disjoint union of subsets,
with each component contained within a single coordinate chart. We can then define the area of
the original subset to be the sum of the areas of the components.

Example 3.8. Let us return to Example 3.6. Since the first fundamental form is given by

𝑔 =

(
1 + 𝑓 21 𝑓1 𝑓2
𝑓1 𝑓2 1 + 𝑓 22

)
,

we see that the infinitesimal area form is given by

𝑑𝐴 =
√︁
det𝑔𝑑𝑢1𝑑𝑢2

=

√︃
(1 + 𝑓 21 ) (1 + 𝑓 22 ) − 𝑓 21 𝑓 22 𝑑𝑢1𝑑𝑢2

=

√︃
1 + 𝑓 21 + 𝑓 22 𝑑𝑢1𝑑𝑢2

=
√︁
1 + ∥𝑑 𝑓 ∥2𝑑𝑢1𝑑𝑢2.
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3 Geometry of Surfaces

Example 3.9. Consider the torus 𝑇 from Example 2.17, with 𝑎 = 1, and 𝑏 = 2. That is, we have
the coordinate chart 𝑋 : 𝑈 = (0, 2𝜋) × (0, 2𝜋) → 𝑇 given by

𝑋 (𝑢1, 𝑢2) = ((2 + cos𝑢1) cos𝑢2, sin𝑢1, (2 + cos𝑢1) sin𝑢2), ∀(𝑢1, 𝑢2) ∈ 𝑈 ,

which covers everything in the torus except for a meridian and a parallel. Since

𝑋1 = (− sin𝑢1 cos𝑢2, cos𝑢1,− sin𝑢1 sin𝑢2),
𝑋2 = (−(2 + cos𝑢1) sin𝑢2, 0, (2 + cos𝑢1) cos𝑢2),

it follows that the first fundamental form is given in these coordinates as

𝑔 =

(
1 0
0 (2 + cos𝑢1)2

)
.

For any 𝑟 ∈ (0, 𝜋), let Ω𝑟 := 𝑋 ( [𝑟, 2𝜋 − 𝑟 ]2) ⊆ 𝑇 . By taking the determinant of the first
fundamental form, we find that the infinitesimal area is given in these coordinates as

𝑑𝐴 =

√︃
det𝑔(𝑢1,𝑢2 )𝑑𝑢1𝑑𝑢2 = (2 + cos𝑢1)𝑑𝑢1𝑑𝑢2,

and hence ∫
Ω𝑟

𝑑𝐴 =

∫ 2𝜋−𝑟

𝑟

∫ 2𝜋−𝑟

𝑟

(2 + cos𝑢1)𝑑𝑢1𝑑𝑢2

= 2(𝜋 − 𝑟 ) (2𝑢1 + sin𝑢1 |2𝜋−𝑟𝑟

= 2(𝜋 − 𝑟 ) (4(𝜋 − 𝑟 ) + sin(2𝜋 − 𝑟 ) − sin 𝑟 ) .

By taking 𝑟 ↓ 0, we see that the area of the entire torus is given by the limit

lim
𝑟↓0

∫
Ω𝑟

𝑑𝐴 = lim
𝑟↓0

2(𝜋 − 𝑟 ) (4(𝜋 − 𝑟 ) + sin(2𝜋 − 𝑟 ) − sin 𝑟 ) = 8𝜋2.

3.3 Orientability

Let 𝑆 ⊆ R3 be a regular surface and 𝑋 : 𝑈 → 𝑆 local coordinates on 𝑆 . For each 𝑝 ∈ 𝑆 , the
tangent space𝑇𝑝𝑆 is a 2-dimensional subspace of R3, and hence admits a 1-dimensional orthogonal
subspace (with respect to the dot-product). In particular, if 𝑞 ∈ 𝑈 is such that 𝑋 (𝑞) = 𝑝, then we
can take the vector 𝑋1(𝑞) × 𝑋2(𝑞) as a non-zero vector lying within this orthogonal subspace.
Normalising this vector, we get a smooth map 𝑁 : 𝑋 (𝑈 ) → R3, given by

𝑁𝑝 =
𝑋1 × 𝑋2

∥𝑋1 × 𝑋2∥
|𝑋 −1 (𝑝 ) , ∀𝑝 ∈ 𝑋 (𝑈 ). (3.2)

That is, for each 𝑝 ∈ 𝑋 (𝑈 ), we have a unit normal vector 𝑁𝑝 ⊥ 𝑇𝑝𝑆 , ∥𝑁𝑝 ∥ = 1.

Remark. If we swapped the order of 𝑋1 and 𝑋2, then we would reverse the sign of 𝑁 . This detail
will be important later.
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We now have a well-defined smooth normal vector locally. This raises the following question

Can we extend this map to the whole of 𝑆 in a smooth way?

Given a real 𝑛-dimensional vector space 𝑉 , consider the collection of ordered bases of 𝑉

B := {(𝑒1, . . . , 𝑒𝑛) ∈ 𝑉𝑛 : 𝑒1, . . . , 𝑒𝑛 form a basis of 𝑉 }.

Given 𝑏1 = (𝑒1, . . . , 𝑒𝑛), 𝑏2 = (𝑓1, . . . , 𝑓𝑛) ∈ B, there exists a unique linear transformation, known
as a change of basis matrix, 𝐴 : 𝑉 → 𝑉 , such that 𝐴𝑒𝑖 = 𝑓𝑖 , for 𝑖 = 1, . . . , 𝑛. i.e, 𝐴 maps 𝑏1 to 𝑏2.
Note that 𝐴 is invertible and so det𝐴 ≠ 0. We define an equivalence relation on B by declaring
𝑏1 ∼ 𝑏2 iff det𝐴 > 0.

Definition 3.10. The space of orientations on 𝑉 is defined as the quotient space 𝑂𝑟 (𝑉 ) := B/∼.

Lemma 3.11. For any real vector space 𝑉 , the space of orientations on 𝑉 is a set of exactly two
elements 𝑂𝑟 (𝑉 ) ≃ {±1}.

Proof. Let 𝑏+ = (𝑒1, . . . , 𝑒𝑛) be any ordered basis of 𝑉 . Define a new ordered basis by swapping
the first two elements around. That is, let 𝑏− = (𝑒2, 𝑒1, 𝑒3, . . . , 𝑒𝑛). It follows that the change
of basis matrix 𝑆 from 𝑏+ to 𝑏− satisfies det 𝑆 = −1, and hence [𝑏+], [𝑏−] ∈ 𝑂𝑟 (𝑉 ) are distinct
elements. Let 𝑏 = (𝑓1, . . . , 𝑓𝑛) be any other ordered basis of 𝑉 . Let 𝐴 denote the change of basis
matrix from 𝑏 to 𝑏+. It follows that 𝑆 ◦𝐴 is the change of basis matrix from 𝑏 to 𝑏− . If det𝐴 > 0,
then 𝑏 ∼ 𝑏+, otherwise det𝐴 < 0 and hence det 𝑆𝐴 = det 𝑆 det𝐴 = − det𝐴 > 0, so 𝑏 ∼ 𝑏−.
Therefore 𝑂𝑟 (𝑉 ) = {[𝑏+], [𝑏−]} ≃ {±1}. □

Given a regular surface 𝑆 admitting local coordinates 𝑋 : 𝑈 → 𝑆 about 𝑝 ∈ 𝑆 , the orientation of
the tangent space 𝑇𝑝𝑆 with respect to 𝑋 is the choice of orientation corresponding to the ordered
basis {𝑋1(𝑞), 𝑋2(𝑞)} (where 𝑞 = 𝑋 −1(𝑝)). More precisely, we make the choice of orientation

[(𝑋1(𝑞), 𝑋2(𝑞))] ∈ 𝑂𝑟 (𝑇𝑝𝑆) .

Given different local coordinates 𝑌 : 𝑉 → 𝑆 about 𝑝, with 𝑌 (𝑟 ) = 𝑝, we have a different choice
of orientation on 𝑇𝑝𝑆 with respect to 𝑌 . Let𝑊 := 𝑋 (𝑈 ) ∩ 𝑌 (𝑉 ). Note that the two bases are
related in the following way

𝑌1(𝑟 ) =
𝜕𝑢1

𝜕𝑣1
𝑋1(𝑞) +

𝜕𝑢2

𝜕𝑣1
𝑋2(𝑞),

𝑌2(𝑟 ) =
𝜕𝑢1

𝜕𝑣2
𝑋1(𝑞) +

𝜕𝑢2

𝜕𝑣2
𝑋2(𝑞) .

In particular, the orientations on𝑇𝑝𝑆 with respect to 𝑋 and 𝑌 agree if and only if (𝑋1(𝑞), 𝑋2(𝑞)) ∼
(𝑌1(𝑟 ), 𝑌2(𝑟 )), if and only if

det

(
𝜕𝑢1
𝜕𝑣1

𝜕𝑢2
𝜕𝑣1

𝜕𝑢1
𝜕𝑣2

𝜕𝑢2
𝜕𝑣2

)
> 0.

i.e, the Jacobian matrix of the change of coordinates map 𝑋 −1 ◦ 𝑌 : 𝑌 −1(𝑊 ) → 𝑋 −1(𝑊 ) has
positive determinant at the point 𝑟 .
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Remark. Since the change of coordinate function 𝑋 −1 ◦ 𝑌 : 𝑌 −1(𝑊 ) → 𝑋 −1(𝑊 ) is a smooth
diffeomorphism, the determinant of its Jacobian matrix is a smooth non-zero function on 𝑌 −1(𝑊 ),
and hence has locally constant sign. Therefore, if the orientations with respect to 𝑋 and 𝑌 agree
at the point 𝑝 ∈𝑊 , and if𝑊 is connected, then they must agree everywhere in𝑊 ⊆ 𝑆 .

Definition 3.12. A regular surface 𝑆 ⊆ R3 is called orientable if we can cover 𝑆 by a collection
of local coordinate charts, such that the orientation on each tangent space is independent of the
coordinate chart chosen from the collection.

A choice of such a collection of charts on 𝑆 is called an orientation on 𝑆 .

Example 3.13. A regular surface given by the graph of a smooth function 𝑓 : 𝑈 ⊆ R2 → R is an
orientable surface, since it has a single global coordinate chart.

Example 3.14. The two sphere S2 ⊆ R3 is an orientable surface. To see why, cover the sphere
via a pair of stereographic projections

𝑋 : R2 → S2 \ {𝑁 }, 𝑌 : R2 → S2 \ {𝑆},

where 𝑁, 𝑆 denote the north pole and south pole respectively. Note that𝑊 := S2 \ {𝑁, 𝑆} is a
connection open subset of the sphere. Consider the change of coordinate function ℎ := 𝑌 −1 ◦ 𝑋 :
𝑋 −1(𝑊 ) → 𝑌 −1(𝑊 ), given in local coordinates by

ℎ = (ℎ1(𝑢1, 𝑢2), ℎ2(𝑢1, 𝑢2)), ∀(𝑢1, 𝑢2) ∈ 𝑋 −1(𝑊 ).

Fix a point 𝑝 ∈ 𝑊 . If det(𝑑ℎ |𝑋 −1 (𝑝 ) ) > 0, then by our earlier remark, since 𝑊 is connected,
det(𝑑ℎ) is positive everywhere in 𝑋 −1(𝑊 ), and so S2 is orientable with this pair of charts.

Alternatively, if we find that det(𝑑ℎ |𝑋 −1 (𝑝 ) ) < 0, then we replace the chart 𝑌 : R2 → S2 \ {𝑆}
with the chart �̃� : R2 → S2 \ {𝑆}, defined by swapping the coordinates around

�̃� (𝑣1, 𝑣2) := 𝑌 (𝑣2, 𝑣1), ∀(𝑣1, 𝑣2) ∈ R2.

In particular, we find that the change of coordinates function ℎ̃ = �̃� −1 ◦ 𝑋 is given in local
coordinates by

ℎ̃ = (ℎ2(𝑢1, 𝑢2), ℎ1(𝑢1, 𝑢2)),

and so we find that det(𝑑ℎ̃ |𝑋 −1 (𝑝 ) ) = − det(𝑑ℎ |𝑋 −1 (𝑝 ) ) > 0, and the same argument as before
follows.

The following lemma shows that orientability is a topological property of the surface 𝑆; it does
not depend on how we embed 𝑆 into the ambient R3.

Lemma 3.15. Let 𝑆1, 𝑆2 ⊆ R3 be regular surfaces which are smoothly diffeomorphic 𝑆1 � 𝑆2.
Then 𝑆1 is orientable if and only if 𝑆2 is orientable. That is, orientability is a topological invariant.

Proof. Let 𝑓 : 𝑆1 → 𝑆2 be a smooth diffeomorphism, and assume 𝑆1 is orientable. Then, from
the definition of orientability, we can cover 𝑆1 with charts such that on their intersection, the
Jacobian of the change of coordinate functions have positive determinant. For every such chart
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𝑋 : 𝑈 → 𝑆1, precompose with the diffeomorphism 𝑓 ◦ 𝑋 : 𝑈 → 𝑆2. Since 𝑓 is a bijection, this
new family of coordinate charts covers 𝑆2. Moreover, given any two such charts 𝑓 ◦ 𝑋 : 𝑈 → 𝑆2
and 𝑓 ◦ 𝑌 : 𝑉 → 𝑆2, the change of coordinate function is given by

(𝑓 ◦ 𝑋 )−1 ◦ (𝑓 ◦ 𝑌 ) = 𝑋 −1 ◦ 𝑓 −1 ◦ 𝑓︸  ︷︷  ︸
=id𝑆1

◦𝑌 = 𝑋 −1 ◦ 𝑌,

and its Jacobian has positive determinant. So 𝑆2 is also orientable. □

Example 3.16. Recall, for 𝑎, 𝑏, 𝑐 > 0 we showed previously that the unit sphere S2 is diffeomorphic
to the ellipsoid

𝐸 := {(𝑥,𝑦, 𝑧) ∈ R3 :
𝑥2

𝑎2
+ 𝑦

2

𝑏2
+ 𝑧

2

𝑐2
= 1}.

Therefore, using Example 3.14, every such ellipsoid 𝐸 is also orientable.

Before we provide an example of a non-orientable surface, we give a more geometric descrip-
tion of orientability using normal vectors. Note, this characterisation is specific to regular surfaces
lying in R3.

Lemma 3.17. A regular surface 𝑆 ⊆ R3 is orientable if and only if there exists a smooth global
choice of unit normal vectors 𝑁 : 𝑆 → R3. That is ∥𝑁𝑝 ∥ = 1, 𝑁𝑝 ⊥ 𝑇𝑝𝑆 , for every 𝑝 ∈ 𝑆 .

Proof. If 𝑆 is orientable, for each coordinate chart in our orientable collection 𝑋 : 𝑈 → 𝑆 , define
𝑁𝑋 : 𝑋 (𝑈 ) → R3 as in (3.2)

𝑁𝑋
𝑝 =

𝑋1 × 𝑋2

∥𝑋1 × 𝑋2∥
|𝑋 −1 (𝑝 ) .

If 𝑌 : 𝑉 → 𝑆 is another coordinate chart in our orientable collection, 𝑝 ∈ 𝑋 (𝑈 ) ∩ 𝑌 (𝑉 ), and if
ℎ := 𝑌 −1 ◦ 𝑋 denotes the change of coordinate function, then

𝑁𝑋
𝑝 =

𝑋1 × 𝑋2

∥𝑋1 × 𝑋2∥
|𝑋 −1 (𝑝 ) (3.3)

=
det(𝑑ℎ)𝑌1 × 𝑌2
∥det(𝑑ℎ)𝑌1 × 𝑌2∥

|𝑌 −1 (𝑝 ) (3.4)

=
det(𝑑ℎ)
|det(𝑑ℎ) |𝑁

𝑌
𝑝 = 𝑁𝑌𝑝 , (3.5)

and so the maps agree on their intersection, and hence piece together to give a well-defined global
map 𝑁 : 𝑆 → R3.
Conversely, assume we have a global map 𝑁 : 𝑆 → R3, and consider local coordinate charts
𝑋 : 𝑈 → 𝑆 covering 𝑆 . Note that, after possibly splitting these charts up into more charts, we
may always assume 𝑈 (and hence 𝑋 (𝑈 )) is connected. For each such chart, fix 𝑝 ∈ 𝑋 (𝑈 ). After
possibly swapping the coordinates (𝑢1, 𝑢2) ∈ 𝑈 , we end up with

𝑁𝑝 =
𝑋1 × 𝑋2

∥𝑋1 × 𝑋2∥
|𝑋 −1 (𝑝 ) .
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Since the inner product
〈
𝑁•,

𝑋1×𝑋2
∥𝑋1×𝑋2 ∥ |𝑋 −1 (•)

〉
: 𝑋 (𝑈 ) → {±1} is continuous on a connected set, it

must be constant, and hence

𝑁𝑝 =
𝑋1 × 𝑋2

∥𝑋1 × 𝑋2∥
|𝑋 −1 (𝑝 ) , ∀𝑝 ∈ 𝑋 (𝑈 ).

In particular, for any two of these coordinate charts, by a similar calculation to (3.3), we see
that the change of coordinate function ℎ = 𝑌 −1 ◦ 𝑋 must have positive determinant. That is, we
have found a collection of coordinate charts covering 𝑆 which give the same orientation on each
tangent space, and hence 𝑆 is orientable. □

Example 3.18. For 𝑘 ∈ Z, we define the following family of regular surfaces

𝐶𝑘 := {((2 − 𝑣 sin(𝑘𝑢)) sin(2𝑢), (2 − 𝑣 sin(𝑘𝑢)) cos(2𝑢), 𝑣 cos(𝑘𝑢)) : 𝑢 ∈ [0, 𝜋], 𝑣 ∈ (−1, 1)}.

Exercise. Check that 𝐶𝑘 ⊆ R3 is a regular surface for each 𝑘 ∈ Z.

We first consider 𝐶0 which is the cylinder {𝑥2 + 𝑦2 = 4, |𝑧 | < 1}. By defining the outward
normal vector 𝑁 (𝑥,𝑦, 𝑧) = (𝑥,𝑦,0)

2 , we see that 𝐶0 is orientable.

Next, consider 𝐶1, which is a Möbius band. We can cover 𝐶1 with two charts 𝑋,𝑌 : (0, 𝜋) ×
(−1, 1) → 𝐶1 each omitting a single interval in 𝐶1

𝑋 (𝑢1, 𝑢2) = ((2 − 𝑢2 sin(𝑢1)) sin(2𝑢1), (2 − 𝑢2 sin(𝑢1)) cos(2𝑢1), 𝑢2 cos(𝑢1)),
𝑌 (𝑣1, 𝑣2) = (−(2 − 𝑣2 cos(𝑣1)) sin(2𝑣1),−(2 − 𝑣2 cos(𝑣1)) cos(2𝑣1),−𝑣2 sin(𝑣1)) .

The intersection of these coordinate charts is disconnected𝑊 =𝑊1 ⊔𝑊2, where

𝑊1 = 𝑋 ((0, 𝜋/2) × (−1, 1)) = 𝑌 ((𝜋/2, 𝜋) × (−1, 1)),
𝑊2 = 𝑋 ((𝜋/2, 𝜋) × (−1, 1)) = 𝑌 ((0, 𝜋/2) × (−1, 1)) .

The change of coordinate function is given by

(𝑣1, 𝑣2) = (𝑢1 +
𝜋

2
, 𝑢2), on𝑊1,

(𝑣1, 𝑣2) = (𝑢1 −
𝜋

2
,−𝑢2), on𝑊2.

Therefore, the Jacobian is positive on𝑊1, but negative on𝑊2.
To show that 𝐶1 is non-orientable, suppose for a contradiction that there is a smooth global

unit normal field 𝑁 : 𝐶1 → R3. Interchanging 𝑢1 and 𝑢2 if necessary, we may assume

𝑁𝑝 =
𝑋1 × 𝑋2

∥𝑋1 × 𝑋2∥
|𝑋 −1 (𝑝 ) , ∀𝑝 ∈ 𝑋 (𝑈 ).

Similarly, after potentially swapping 𝑣1 and 𝑣2, we may also assume

𝑁𝑝 =
𝑌1 × 𝑌2
∥𝑌1 × 𝑌2∥

|𝑌 −1 (𝑝 ) , ∀𝑝 ∈ 𝑌 (𝑈 ).

However, the Jacobian of the change of coordinates must be −1 in either𝑊1 or𝑊2. This implies
that 𝑁𝑝 = −𝑁𝑝 at any point on this component of the intersection, which is a contradiction.
Therefore, the Möbius strip 𝐶1 is non-orientable.
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Exercise. For which values of 𝑘 ∈ Z is the surface 𝐶𝑘 orientable?

To finish this section, we show that all of the regular surfaces we constructed in §2 are
orientable.

Lemma 3.19. Suppose𝑈 ⊆ R3 is an open subset, 𝑓 : 𝑈 → R is a smooth function and 𝜆 ∈ R a
regular value of 𝑓 . Then the regular surface 𝑆 = 𝑓 −1(𝜆) is orientable

Proof. As 𝜆 is a regular value of 𝑓 ,

∇𝑓 (𝑝) = (𝑓𝑥 (𝑝), 𝑓𝑦 (𝑝), 𝑓𝑧 (𝑝)) ∈ R3,

is non-zero at every 𝑝 ∈ 𝑆 . Moreover, by applying the chain rule, we find that ∇𝑓 (𝑝) ⊥ 𝑇𝑝𝑆 at
every 𝑝 ∈ 𝑆 . Therefore, we can define a smooth global unit normal field 𝑁 : 𝑆 → R3 via the map

𝑁𝑝 :=
∇𝑓 (𝑝)
∥∇𝑓 (𝑝)∥ , ∀𝑝 ∈ 𝑆.

□

Exercise. Show that any surface of revolution is orientable.

3.4 Gauss Map and Shape Operator

In this section, we take 𝑆 ⊆ R3 to be an oriented regular surface. That is, 𝑆 is a orientable regular
surface equipped with a specific orientation.

Due to Lemma 3.17, this is equivalent to 𝑆 coming equipped with a smooth global map
𝑁 : 𝑆 → R3 such that ∥𝑁𝑝 ∥ = 1 and 𝑁𝑝 ⊥ 𝑇𝑝𝑆 for every 𝑝 ∈ 𝑆 . The condition ∥𝑁𝑝 ∥ = 1 for every
𝑝 ∈ 𝑆 is equivalent to saying that the image lies inside the unit sphere 𝑁 : 𝑆 → S2.

Definition 3.20. For an oriented regular surface 𝑆 ⊆ R3, the map 𝑁 : 𝑆 → S2 defined above is
known as the Gauss map.

Remark. The Gauss map depends on the choice of orientation on the surface; changing the
orientation will alter the Gauss map.

Since locally the Gauss map is defined as in equation (3.2) using coordinate charts from our
orientation, it is clear that the Gauss map is a smooth map between regular surfaces. Hence, we
can consider its derivative at any point

𝑑𝑁𝑝 : 𝑇𝑝𝑆 → 𝑇𝑁𝑝
S2, ∀𝑝 ∈ 𝑆.

We first observe that 𝑇𝑝𝑆 and 𝑇𝑁𝑝
S2 are both 2-dimensional subspaces of R3 perpendicular to 𝑁𝑝 .

It follows that they must be the same space, and so we can think of the derivative as a linear map

𝑑𝑁𝑝 : 𝑇𝑝𝑆 → 𝑇𝑝𝑆, ∀𝑝 ∈ 𝑆.

Definition 3.21. For an oriented regular surface 𝑆 ⊆ R3, the negative derivative of the Gauss
map −𝑑𝑁𝑝 : 𝑇𝑝𝑆 → 𝑇𝑝𝑆 at 𝑝 ∈ 𝑆 is known as the shape operator at 𝑝.
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Remark. The inclusion of a different sign on the derivative is just a convention.

Let us unwind the definition slightly to see what the shape operator is measuring. Suppose
𝛾 : (−𝜖, 𝜖) → 𝑆 is a curve in 𝑆 with 𝛾 (0) = 𝑝 ∈ 𝑆 . Then the curve 𝑁 ◦ 𝛾 : (−𝜖, 𝜖) → S2 describes
the normal vector to 𝑆 along 𝛾 . Then −𝑑𝑁𝑝 · 𝛾 ′(0) = −(𝑁 ◦𝛾)′(0) measures the rate of change of
this normal vector along the curve 𝛾 at the point 𝑝.

For curves, the derivative of the normal vector (with respect to arc-length) is precisely the
curvature of the curve 𝜅 ∈ R. For surfaces we shall also think of as the curvature as the derivative
of the normal vector (i.e the shape operator), however, this is now a 2 × 2 matrix.

Example 3.22. Returning to Example 3.2, for an affine plane 𝑃 with global parameterisation
𝑋 : R2 → 𝑃

𝑋 (𝑢1, 𝑢2) = 𝑥 + 𝑢1𝑤1 + 𝑢2𝑤2, ∀(𝑢1, 𝑢2) ∈ R2,

where 𝑥 ∈ R3 and𝑤1,𝑤2 ∈ R3 are orthonormal, the Gauss map 𝑁 : 𝑃 → S2 is the constant map

𝑁𝑝 = 𝑤1 ×𝑤2, ∀𝑝 ∈ 𝑃,

so the shape operator −𝑑𝑁𝑝 vanishes everywhere and 𝑃 has ‘no curvature’.

Example 3.23. Consider S2 equipped with the orientation corresponding to the Gauss map
𝑁 : S2 → S2 given by the identity on the sphere. In particular, 𝑑𝑁𝑝 : 𝑇𝑝𝑆 → 𝑇𝑝𝑆 is the identity
map at any point 𝑝 ∈ S2, and so S2 has ‘constant curvature’

𝑑𝑁𝑝 =

(
1 0
0 1

)
.

Example 3.24. Returning to Example 3.18, consider the cylinder

𝐶0 = {(𝑥,𝑦, 𝑧) ∈ R3 : 𝑥2 + 𝑦2 = 4, |𝑧 | < 1}.

With respect to an appropriate orientation, this cylinder has Gauss map 𝑁 : 𝐶0 → S2,

𝑁 (𝑥,𝑦, 𝑧) = 1
2
(𝑥,𝑦, 0), ∀(𝑥,𝑦, 𝑧) ∈ 𝐶0.

Along any curve 𝛾 (𝑡) = (𝑥 (𝑡), 𝑦 (𝑡), 𝑧 (𝑡)) ∈ 𝐶0 with 𝛾 (0) = 𝑝, we have

𝑁 ◦ 𝛾 (𝑡) = 1
2
(𝑥 (𝑡), 𝑦 (𝑡), 0),

and hence
𝑑𝑁𝑝 (𝑥 ′(0), 𝑦′(0), 𝑧′(0)) = (𝑁 ◦ 𝛾)′(0) = 1

2
(𝑥 ′(0), 𝑦′(0), 0) .

Since 𝑇𝑝𝐶0 is spaned by a pair of vectors 𝑣1, 𝑣2, where 𝑣1 is parallel to the {𝑧 = 0} plane and
𝑣2 = (0, 0, 1), we find that 𝑑𝑁𝑝 · 𝑣1 = 1

2𝑣1, and 𝑑𝑁𝑝𝑣2 = 0. Thus, with respect to this basis of 𝑇𝑝𝐶0,
the cylinder has shape operator

−𝑑𝑁𝑝 =

(
− 1

2 0
0 0

)
.
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Example 3.25. Consider the hyperbolic paraboloid 𝐻 = {𝑧 = 𝑦2 − 𝑥2} which is a graph given by
the global parameterisation

𝑋 (𝑢1, 𝑢2) = (𝑢1, 𝑢2, 𝑢22 − 𝑢21), ∀(𝑢1, 𝑢2) ∈ R2.

With respect to this parameterisation we have

𝑋1 = (1, 0,−2𝑢1), 𝑋2 = (0, 1, 2𝑢2),

and hence the Gauss map is

𝑁 (𝑢1,𝑢2 ) =
©«

2𝑢1√︃
1 + 4𝑢21 + 4𝑢22

,
−2𝑢2√︃

1 + 4𝑢21 + 4𝑢22
,

1√︃
1 + 4𝑢21 + 4𝑢22

ª®®¬ .
Consider a curve 𝛾 (𝑡) = 𝑋 (𝑢1(𝑡), 𝑢2(𝑡)) in 𝐻 with 𝛾 (0) = (0, 0, 0) = 𝑝. Then

𝛾 ′(0) = 𝑋1𝑢
′
1(0) + 𝑋2𝑢

′
2(0) = (𝑢′1(0), 𝑢′2(0), 0),

in Cartesian coordinates. Therefore

(𝑁 ◦ 𝛾)′(0) = (2𝑢1,−2𝑢2, 0) ,

and so with respect to the basis 𝑋1 = (1, 0, 0), 𝑋2 = (0, 1, 0), we have

−𝑑𝑁𝑝 =

(
−2 0
0 2

)
.

Lemma 3.26. The shape operator −𝑑𝑁𝑝 : 𝑇𝑝𝑆 → 𝑇𝑝𝑆 at a point 𝑝 ∈ 𝑆 is a self-adjoint linear
map. That is 〈

𝑑𝑁𝑝 ·𝑤1,𝑤2
〉
=

〈
𝑤1, 𝑑𝑁𝑝 ·𝑤2

〉
, ∀𝑤1,𝑤2 ∈ 𝑇𝑝𝑆. (3.6)

Proof. Since the shape operator is linear, it suffices to check (3.6) for a single basis {𝑤1,𝑤2} of
𝑇𝑝𝑆 . Lets choose𝑤1 = 𝑋1,𝑤2 = 𝑋2 for some local coordinates 𝑋 : 𝑈 → 𝑆 about 𝑝.

If 𝛾 : (−𝜖, 𝜖) → 𝑋 (𝑈 ) ⊆ 𝑆 is a smooth curve with 𝛾 (0) = 𝑝, expressing it in local coordinates
as

𝛾 (𝑡) = 𝑋 (𝑢1(𝑡), 𝑢2(𝑡)), ∀𝑡 ∈ (−𝜖, 𝜖),

we find that

𝑑𝑁𝑝 (𝑋1𝑢
′
1(0) + 𝑋2𝑢

′
2(0)) = 𝑑𝑁𝑝 · 𝛾 ′(0)

=
𝑑

𝑑𝑡
(𝑁 (𝑢1(𝑡), 𝑢2(𝑡)) |𝑡=0

= 𝑁1𝑢
′
1(0) + 𝑁2𝑢

′
2(0) .

In particular, we have 𝑑𝑁𝑝 · 𝑋1 = 𝑁1 and 𝑑𝑁𝑝 · 𝑋2 = 𝑁2. Thus, it suffices to show that

⟨𝑁1, 𝑋2⟩ = ⟨𝑋1, 𝑁2⟩ .
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As we have ⟨𝑁,𝑋1⟩ = ⟨𝑁,𝑋2⟩ = 0 locally in 𝑋 (𝑈 ), differentiating these quantities yields

0 =
𝜕

𝜕𝑢2
(⟨𝑁,𝑋1⟩) = ⟨𝑁2, 𝑋1⟩ + ⟨𝑁,𝑋12⟩ ,

0 =
𝜕

𝜕𝑢1
(⟨𝑁,𝑋2⟩) = ⟨𝑁1, 𝑋2⟩ + ⟨𝑁,𝑋21⟩ .

Since 𝑋 is smooth, partial derivatives commute, and hence

⟨𝑁2, 𝑋1⟩ = −
〈
𝑁,𝑋12

〉
= −

〈
𝑁,𝑋21

〉
= ⟨𝑁1, 𝑋2⟩ ,

as required. □

Let {𝑣1, 𝑣2} be an orthonormal basis of 𝑇𝑝𝑆 . As the shape operator is self-adjoint, the matrix of
𝑑𝑁𝑝 with respect to this basis is symmetric:

(𝑑𝑁𝑝)𝑖 𝑗 =
〈
𝑑𝑁𝑝 · 𝑣𝑖 , 𝑣 𝑗

〉
=

〈
𝑣𝑖 , 𝑑𝑁𝑝 · 𝑣 𝑗

〉
= (𝑑𝑁𝑝) 𝑗𝑖 .

Therefore, by standard Linear Algebra, 𝑑𝑁𝑝 can be diagonalised by an orthonormal basis of
eigenvectors. i.e. there exists constants 𝜅1, 𝜅2 ∈ R and an orthonormal basis {𝑒1, 𝑒2} of 𝑇𝑝𝑆 such
that, with repsect to this basis

−𝑑𝑁𝑝 =

(
𝜅1 0
0 𝜅2

)
. (3.7)

Definition 3.27. 𝜅1, 𝜅2 ∈ R as defined above are known as the principal curvatures of 𝑆 at 𝑝.

Remark. Without loss of generality, we always assume 𝜅1 ≥ 𝜅2.
There are precisely two invariant polynomials on the space of 2×2 matrices (under conjugation

by 𝐺𝐿(2,R)) - the determinant and the trace. In each case, they can be written explicitly in terms
of the principal curvatures.

Definition 3.28. Let 𝑆 ⊆ R3 be an oriented regular surface with Gauss map 𝑁 : 𝑆 → S2. At
any point 𝑝 ∈ 𝑆 , we define the Gaussian curvature of 𝑆 at 𝑝 to be the determinant of the shape
operator

𝐾 := det(−𝑑𝑁𝑝) = 𝜅1𝜅2,
and the mean curvature of 𝑆 at 𝑝 to be the one half of the trace of the shape operator

𝐻 :=
1
2

Tr(−𝑑𝑁𝑝) =
𝜅1 + 𝜅2

2
.

Remark. Note that, although switching the orientation on 𝑆 will potentially reverse the sign of
the mean curvature, the Gaussian curvature is independent of the orientation chosen.

Example 3.29. Returning to our earlier examples (equipped with the appropriate orientations)
from before, we see that for the

• Affine plane 𝑃 , 𝜅1 = 𝜅2 = 0, 𝐻 = 0, 𝐾 = 0;

• Sphere S2, 𝜅1 = 𝜅2 = −1, 𝐾 = 1, 𝐻 = −1;

• Cylinder 𝐶0, 𝜅1 = 0, 𝜅2 = − 1
2 , 𝐾 = 0, 𝐻 = − 1

2 ;

• Hyperbolic paraboloid 𝐻 , 𝜅1 = 2, 𝜅2 = −2, 𝐾 = −4, 𝐻 = 0.
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3 Geometry of Surfaces

3.5 Second Fundamental Form

Since the shape operator is self-adjoint, this allows us to consider the quadratic form associated
to it at each point.

Definition 3.30. Let 𝑆 ⊆ R3 be an oriented regular surface with Gauss map 𝑁 : 𝑆 → S2. For
each 𝑝 ∈ 𝑆 , the second fundamental form of 𝑆 at 𝑝 is the quadratic form ℎ𝑝 : 𝑇𝑝𝑆 → R, given by

ℎ𝑝 (𝑣) :=
〈
−𝑑𝑁𝑝 · 𝑣, 𝑣

〉
, ∀𝑣 ∈ 𝑇𝑝𝑆.

Remark. Unlike the first fundamental form, note that the second fundamental form can be
degenerate.

Recall, if {𝑒1, 𝑒2} is our orthonormal basis of eigenvectors for the shape operator −𝑑𝑁𝑝 , so
that (3.7) holds with respect to this basis, then for any 𝑣 ∈ 𝑇𝑝𝑆 , writing 𝑣 = 𝑣1𝑒1 + 𝑣2𝑒2 for some
𝑣1, 𝑣2 ∈ R, we have

ℎ𝑝 (𝑣) = ⟨𝜅1𝑣1𝑒1 + 𝜅2𝑣2𝑒2, 𝑣⟩ = 𝜅1𝑣21 + 𝜅2𝑣22 .

Thus, we find that the principal curvatures are precisely the maximum and minimum values of
the second fundamental form on the unit circle in 𝑇𝑝𝑆:

𝜅1 = max{ℎ𝑝 (𝑣) : 𝑣 ∈ 𝑇𝑝𝑆, ∥𝑣 ∥ = 1},
𝜅2 = min{ℎ𝑝 (𝑣) : 𝑣 ∈ 𝑇𝑝𝑆, ∥𝑣 ∥ = 1}.

As with the first fundamental form, we find an expression for ℎ using local coordinates. That
is, suppose 𝑋 : 𝑈 → 𝑆 are local coordinates about 𝑝 ∈ 𝑆 . Using the basis of 𝑇𝑝𝑆 associated with
𝑋 , we find that

ℎ𝑝 (𝑋1) =
〈
−𝑑𝑁𝑝 · 𝑋1, 𝑋1

〉
= − ⟨𝑁1, 𝑋1⟩ = ⟨𝑁,𝑋11⟩ ,

ℎ𝑝 (𝑋2) =
〈
−𝑑𝑁𝑝 · 𝑋2, 𝑋2

〉
= ⟨𝑁,𝑋22⟩ ,

ℎ𝑝 (𝑋1, 𝑋2) = ⟨𝑁,𝑋12⟩ ,
ℎ𝑝 (𝑋2, 𝑋1) = ⟨𝑁,𝑋21⟩ .

and so, since 𝑁 =
𝑋1×𝑋2
∥𝑋1×𝑋2 ∥ =

𝑋1×𝑋2√
det𝑔

, we have that ℎ𝑝 can be expressed as a matrix with respect to

the basis of 𝑇𝑝𝑆 associated with 𝑋 as

ℎ𝑝 =

(
ℎ11 ℎ12
ℎ21 ℎ22

)
=

(
⟨𝑁,𝑋11⟩ ⟨𝑁,𝑋12⟩
⟨𝑁,𝑋21⟩ ⟨𝑁,𝑋22⟩

)
=

1√︁
det𝑔

(
(𝑋1, 𝑋2, 𝑋11) (𝑋1, 𝑋2, 𝑋12)
(𝑋1, 𝑋2, 𝑋21) (𝑋1, 𝑋2, 𝑋22)

)
, (3.8)

where (𝑣1, 𝑣2, 𝑣3) := ⟨𝑣1 × 𝑣2, 𝑣3⟩ denotes the triple product.

Example 3.31. Consider again the torus 𝑇 with coordinate chart 𝑋 : 𝑈 = (0, 2𝜋) × (0, 2𝜋) → 𝑇

given by

𝑋 (𝑢1, 𝑢2) = ((2 + cos𝑢1) cos𝑢2, sin𝑢1, (2 + cos𝑢1) sin𝑢2), ∀(𝑢1, 𝑢2) ∈ 𝑈 ,
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We calculated previously that

𝑋1 = (− sin𝑢1 cos𝑢2, cos𝑢1,− sin𝑢1 sin𝑢2),
𝑋2 = (−(2 + cos𝑢1) sin𝑢2, 0, (2 + cos𝑢1) cos𝑢2) .

Differentiating the vector 𝑋 again to find the second derivatives, we have

𝑋11 = (− cos𝑢1 cos𝑢2,− sin𝑢1,− cos𝑢1 sin𝑢2),
𝑋12 = 𝑋21 = (sin𝑢1 sin𝑢2, 0,− sin𝑢1 cos𝑢2),

𝑋22 = (−(2 + cos𝑢1) cos𝑢2, 0,−(2 + cos𝑢1) sin𝑢2),

and since
𝑁 =

𝑋1 × 𝑋2

∥𝑋1 × 𝑋2∥
= (cos𝑢1 cos𝑢2, sin𝑢1, cos𝑢1 sin𝑢2) ,

plugging everything into (3.8) we have

ℎ𝑝 =

(
⟨𝑁,𝑋11⟩ ⟨𝑁,𝑋12⟩
⟨𝑁,𝑋21⟩ ⟨𝑁,𝑋22⟩

)
=

(
−1 0
0 −(2 + cos𝑢1) cos𝑢1

)
.

We now find an expression for the shape operator (and hence the Gaussian and Mean curva-
tures) purely in terms of the 1st and 2nd fundamental forms:

Let 𝑆 ⊆ R3 be an oriented regular surface with Gauss map 𝑁 : 𝑆 → S2, and fix some local
coordinates 𝑋 : 𝑈 → 𝑆 about 𝑝 ∈ 𝑆 . With respect to the basis {𝑋1, 𝑋2} of𝑇𝑝𝑆 associated to 𝑋 , we
can express the shape operator at 𝑝 as the 2 × 2 matrix

[−𝑑𝑁𝑝]𝑋 =

(
𝑎11 𝑎12
𝑎21 𝑎22

)
.

i.e. −𝑑𝑁𝑝 · 𝑋 𝑗 = 𝑎1𝑗𝑋1 + 𝑎2𝑗𝑋2, for 𝑗 = 1, 2. With respect to the same basis of 𝑇𝑝𝑆 , it follows that

ℎ𝑖 𝑗 =
〈
−𝑑𝑁𝑝 · 𝑋 𝑗 , 𝑋𝑖

〉
=

〈
𝑎1𝑗𝑋1 + 𝑎2𝑗𝑋2, 𝑋𝑖

〉
= 𝑔𝑖1𝑎1𝑗 + 𝑔𝑖2𝑎2𝑗 ,

for any 𝑖, 𝑗 ∈ {1, 2}. In particular, with respect to the basis of 𝑇𝑝𝑆 associated to 𝑋 , we have the
matrix relation

[ℎ𝑝]𝑋 =

(
ℎ11 ℎ12
ℎ21 ℎ22

)
=

(
𝑔11 𝑔12
𝑔21 𝑔22

) (
𝑎11 𝑎12
𝑎21 𝑎22

)
= [𝑔𝑝]𝑋 · [−𝑑𝑁𝑝]𝑋 .

Since 𝑔𝑝 is non-degenerate, its matrix with respect to the basis associated with 𝑋 , [𝑔𝑝]𝑋 is
invertible, and hence

[−𝑑𝑁𝑝]𝑋 = [𝑔𝑝]−1𝑋 · [ℎ𝑝]𝑋 . (3.9)

Taking the determinant and trace of (3.9), we have the following lemma.
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3 Geometry of Surfaces

Lemma 3.32. If 𝑆 ⊆ R3 is an oriented regular surface with local coordinates 𝑋 : 𝑈 → 𝑆 about
𝑝 ∈ 𝑆 , then the Gaussian curvature at 𝑝 is given by

𝐾 (𝑝) = ℎ11ℎ22 − ℎ12ℎ21
𝑔11𝑔22 − 𝑔12𝑔21

,

and the Mean curvature at 𝑝 given by

𝐻 (𝑝) = 𝑔11ℎ22 + 𝑔22ℎ11 − 𝑔12ℎ21 − 𝑔21ℎ12
2(𝑔11𝑔22 − 𝑔12𝑔21)

,

where 𝑔𝑝 and ℎ𝑝 are expressed with respect to the local coordinates 𝑋 .

Proof. Taking the determinant of (3.9) yields

𝐾 (𝑝) = det[−𝑑𝑁𝑝]𝑋
= det( [𝑔𝑝]−1𝑋 · [ℎ𝑝]𝑋 )
= det( [𝑔𝑝]𝑋 )−1 det[ℎ𝑝]𝑋

=
ℎ11ℎ22 − ℎ12ℎ21
𝑔11𝑔22 − 𝑔12𝑔21

.

Next, taking the trace of (3.9) yields

2𝐻 (𝑝) = tr[−𝑑𝑁𝑝]𝑋
= tr( [𝑔𝑝]−1𝑋 · [ℎ𝑝]𝑋 )

=
1

det[𝑔𝑝]𝑋
tr

((
𝑔22 −𝑔12
−𝑔21 𝑔11

) (
ℎ11 ℎ12
ℎ21 ℎ22

))
=

1
𝑔11𝑔22 − 𝑔12𝑔21

tr
(
𝑔22ℎ11 − 𝑔12ℎ21 −

− −𝑔21ℎ12 + 𝑔11ℎ22

)
=
𝑔11ℎ22 + 𝑔22ℎ11 − 𝑔12ℎ21 − 𝑔21ℎ12

𝑔11𝑔22 − 𝑔12𝑔21
.

□

Example 3.33. For the torus 𝑇 from Example 3.31, we have that in local coordinates

𝑔𝑝 =

(
1 0
0 (2 + cos𝑢1)2

)
,

ℎ𝑝 =

(
−1 0
0 −(2 + cos𝑢1) cos𝑢1

)
.

Plugging these into our formulas, we conclude that

𝐾 (𝑝) = cos𝑢1(2 + cos𝑢1)
(2 + cos𝑢1)2

=
cos𝑢1

2 + cos𝑢1
,

𝐻 (𝑝) = −(2 + cos𝑢1)2 − cos𝑢1(2 + cos𝑢1)
2(2 + cos𝑢1)2

= −1 + cos𝑢1
2 + cos𝑢1

.
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3 Geometry of Surfaces

In this example, we note that∫
𝑇

𝐾𝑑𝐴 =

∫ 2𝜋

0

∫ 2𝜋

0
𝐾
√︁
det𝑔𝑑𝑢1𝑑𝑢2

=

∫ 2𝜋

0

∫ 2𝜋

0
cos𝑢1𝑑𝑢1𝑑𝑢2 = 0.

That is, the torus has total curvature zero. In fact, as we shall see at the end of the course, this is
true regardless of the way we embed a torus into R3; if 𝑆 is any regular surface diffeomorphic to
𝑇 , then

∫
𝑆
𝐾𝑑𝐴 = 0 also.
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4 Curvature

4.1 Gaussian Curvature

In §3 we defined all of the operators and quantities describing the geometry of a regular surface.
We now investigate the geometric significance of the Gaussian curvature 𝐾 : 𝑆 → R. We begin
with the following definition regarding the sign of 𝐾 at each point.

Definition 4.1. A point 𝑝 on a regular surface 𝑆 is called:

1. elliptic if 𝐾 (𝑝) > 0;

2. hyperbolic if 𝐾 (𝑝) < 0;

3. parabolic if 𝐾 (𝑝) = 0, but 𝑑𝑁𝑝 ≠ 0;

4. planar if 𝑑𝑁𝑝 = 0.

Warning: Contrary to the name, the shape operator vanishing at a single point does not imply
that the surface is a plane.

Example 4.2. Consider the surface 𝑆 given by the graph of the smooth function (𝑥,𝑦) ↦→ (𝑥2+𝑦2)2.
This is a regular surface with global coordinate chart

𝑋 (𝑢, 𝑣) = (𝑢, 𝑣, (𝑢2 + 𝑣2)2).

It follows that

𝑋𝑢 = (1, 0, 4𝑢 (𝑢2 + 𝑣2)), 𝑋𝑣 = (0, 1, 4𝑣 (𝑢2 + 𝑣2)),

𝑋𝑢𝑢 = (0, 0, 12𝑢2 + 4𝑣2), 𝑋𝑢𝑣 = (0, 0, 8𝑢𝑣), 𝑋𝑣𝑣 = (0, 0, 12𝑣2 + 4𝑢2) .

Therefore, the point 𝑝 = (0, 0, 0) is planar.

Since the Gaussian curvature is the product of the principal curvatures, its sign indicates
whether the signs of the principal curvatures agree. In particular, this tells us geometrically how
the surface bends locally about the tangent plane.

Lemma 4.3. Let 𝑝 be a point in a regular surface 𝑆 . If 𝑝 is an elliptic point, then there exists an
open set 𝑉 in 𝑆 containing 𝑝 such that all of the points inside of 𝑉 lay on the same side of the
affine plane 𝑝 +𝑇𝑝𝑆 . If 𝑝 is a hyperbolic point, then for any open set 𝑉 in 𝑆 containing 𝑝, there
exists points in 𝑉 on either side of 𝑝 +𝑇𝑝𝑆 .
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Proof. Let 𝑋 : 𝑈 → 𝑆 be local coordinates about 𝑝 with 𝑋 (0, 0) = 𝑝, and normal vector 𝑁𝑝 .
Define the signed distance to 𝑝 +𝑇𝑝𝑆 by 𝑑 : 𝑈 → R,

𝑑 (𝑢1, 𝑢2) :=
〈
𝑋 (𝑢1, 𝑢2) − 𝑝, 𝑁𝑝

〉
.

Since 𝑋 is smooth, we can approximate it about the origin using Taylor’s theorem

𝑋 (𝑢1, 𝑢2) = 𝑋 (0, 0)︸ ︷︷ ︸
𝑝

+𝑋1𝑢1 + 𝑋2𝑢2 +
1
2

(
𝑋11𝑢

2
1 + 2𝑋12𝑢1𝑢2 + 𝑋22𝑢

2
2
)
+ 𝜀 (𝑢1, 𝑢2)︸   ︷︷   ︸
𝑜 (𝑢21+𝑢22 )

,

where the error function 𝜀 (𝑢1, 𝑢2) is a smooth function𝑈 → R3 such that

lim
(𝑢1,𝑢2 )→(0,0)

𝜀 (𝑢1, 𝑢2)
𝑢21 + 𝑢22

= 0.

It follows that the signed distance is given by

𝑑 (𝑢1, 𝑢2) =
1
2

(〈
𝑋11, 𝑁𝑝

〉
𝑢21 + 2

〈
𝑋12, 𝑁𝑝

〉
𝑢1𝑢2 +

〈
𝑋22, 𝑁𝑝

〉
𝑢22

)
+

〈
𝜀 (𝑢1, 𝑢2), 𝑁𝑝

〉
=
1
2

(
ℎ11𝑢

2
1 + 2ℎ12𝑢1𝑢2 + ℎ22𝑢22

)
+

〈
𝜀 (𝑢1, 𝑢2), 𝑁𝑝

〉
=
1
2
ℎ𝑝 (𝑤) +

〈
𝜀 (𝑢1, 𝑢2), 𝑁𝑝

〉
=

∥𝑤 ∥2
2

(
ℎ𝑝

(
𝑤

∥𝑤 ∥

)
+

〈
2𝜀 (𝑢1, 𝑢2)
∥𝑤 ∥2 , 𝑁𝑝

〉)
,

where𝑤 = 𝑢1𝑋1 + 𝑢2𝑋2 ∈ 𝑇𝑝𝑆 . Note that

𝑤 = 𝑑𝑋 (𝑢1,𝑢2 ) ·
(
𝑢1
𝑢2

)
, ∀(𝑢1, 𝑢2) ∈ 𝑈 .

After possibly shrinking 𝑈 we may assume that the linear isometries given by the directive at
every point 𝑑𝑋 are uniformly bounded on𝑈 , and so we have that

∥𝑤 ∥2 ≥ 𝑐 (𝑢21 + 𝑢22),

for some 𝑐 > 0. If 𝑝 is elliptic, the signs of 𝜅1 and 𝜅2 agree, and hence ℎ𝑝 (𝑤/∥𝑤 ∥) has a
fixed sign. Without loss of generality, assume that the principal curvatures are positive, and so
ℎ𝑝 (𝑤/∥𝑤 ∥) ≥ 𝜅2 > 0 for any non-zero𝑤 ∈ 𝑇𝑝𝑆 . After possibly shrinking𝑈 , we can assume that����〈2𝜀 (𝑢1, 𝑢2)∥𝑤 ∥2 , 𝑁𝑝

〉���� ≤ 2
𝑐

����𝜀 (𝑢1, 𝑢2)𝑢21 + 𝑢22

���� ≤ 𝜅2,
and hence 𝑑 ≥ 0 on𝑈 . The conclusion for 𝑝 elliptic follows by taking 𝑉 = 𝑋 (𝑈 ).

If 𝑝 is hyperbolic, then 𝜅1 > 0 and 𝜅2 < 0, and we may again shrink𝑈 so that����〈2𝜖 (𝑢1, 𝑢2)∥𝑤 ∥2 , 𝑁𝑝

〉���� ≤ 2
𝑐

����𝜖 (𝑢1, 𝑢2)𝑢21 + 𝑢22

���� ≤ 1
2
min{𝜅1,−𝜅2}.
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Let 𝑒1, 𝑒2 ∈ 𝑇𝑝𝑆 denote the orthonormal basis of eigenvectors corresponding to the eigenval-
ues 𝜅1, 𝜅2. If 𝑒1 = 𝑎1𝑋1 + 𝑎2𝑋2 and 𝑒2 = 𝑏1𝑋1 + 𝑏2𝑋2, then for 𝛿 > 0 sufficiently small,
(𝛿𝑎1, 𝛿𝑎2), (𝛿𝑏1, 𝛿𝑏2) ∈ 𝑈 , and we have

𝑑 (𝛿𝑎1, 𝛿𝑎2) ≥
𝛿2

4
𝜅1 > 0,

𝑑 (𝛿𝑏1, 𝛿𝑏2) ≤
𝛿2

4
𝜅2 < 0.

Since 𝛿 can be made arbitrarily small, the case when 𝑝 is hyperbolic follows. □

In fact, the sign of the Gaussian curvature at a point allows us to classify its local second order
asymptotics.

Lemma 4.4. Let 𝑝 ∈ 𝑆 and 𝑒1, 𝑒2 ∈ 𝑇𝑝𝑆 be the orthonormal basis of eigenvectors for the shape
operator −𝑑𝑁𝑝 . After applying a translation and rotation so that 𝑝 = (0, 0, 0), 𝑒1 = (1, 0, 0) and
𝑒2 = (0, 1, 0), the surface 𝑆 is locally given by the graph

𝑓 (𝑥,𝑦) = 1
2
(𝜅1𝑥2 + 𝜅2𝑦2) + 𝑜 (𝑥2 + 𝑦2) . (4.1)

That is, the second order asymptotics of 𝑆 at 𝑝 are given by

• An elliptic paraboloid if 𝑝 is elliptic;

• A hyperbolic paraboloid if 𝑝 is hyperbolic;

• A parabolic cylinder if 𝑝 is parabolic.

Proof. By Lemma 2.9, 𝑆 is locally a graph of two variables at 𝑝. Moreover, as 𝑁𝑝 = (0, 0, 1)
lies in both of the planes {𝑥 = 0} and {𝑦 = 0}, 𝑆 must locally be a graph over {𝑧 = 0}. That is,
for some open subset𝑈 ⊆ R2 containing (0, 0), 𝑆 is locally the graph of some smooth function
𝑓 : 𝑈 → R. By our assumptions, 𝑇𝑝𝑆 = {𝑧 = 0}, which implies that 𝑓1(0, 0) = 𝑓2(0, 0) = 0.

Locally, we have the coordinate chart 𝑋 : 𝑈 → R3 given by 𝑋 (𝑢1, 𝑢2) = (𝑢1, 𝑢2, 𝑓 (𝑢1, 𝑢2)). It
follows that

𝑋1 = (1, 0, 𝑓1), 𝑋2 = (0, 1, 𝑓2), 𝑁 =
(−𝑓1,−𝑓2, 1)√︃
1 + 𝑓 21 + 𝑓 22

.

Differentiating the normal yields

−𝑁1 =
1√︃

1 + 𝑓 21 + 𝑓 22
(𝑓11, 𝑓21, 0) −

𝑓1 𝑓11 + 𝑓2 𝑓21
(1 + 𝑓 21 + 𝑓 22 )

3
2
(𝑓1, 𝑓2, 0) ,

−𝑁2 =
1√︃

1 + 𝑓 21 + 𝑓 22
(𝑓12, 𝑓22, 0) −

𝑓1 𝑓12 + 𝑓2 𝑓22
(1 + 𝑓 21 + 𝑓 22 )

3
2
(𝑓1, 𝑓2, 0) ,

which at 𝑝 evaluate to
−𝑁1 = (𝑓11, 𝑓12, 0), −𝑁2 = (𝑓12, 𝑓22, 0) .
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Using the formula −𝑁𝑖 = −𝑑𝑁𝑝 · 𝑋𝑖 = 𝜅𝑖𝑒𝑖 at 𝑝, we also have

−𝑁1 = (𝜅1, 0, 0), −𝑁2 = (0, 𝜅2, 0) .
Equating the two expressions for −𝑁1 and −𝑁2, we find that

𝑓11 = 𝜅1, 𝑓12 = 𝑓21 = 0, 𝑓22 = 𝜅2.

Equation (4.1) follows from Taylor’s theorem. □

Consider a regular surface 𝑆 ⊆ R3 equipped with local coordinates 𝑋 : 𝑈 → 𝑆 about 𝑝. Recall
that the infinitesimal area form on 𝑆 is given by

𝑑𝐴𝑆 = ∥𝑋𝑢 × 𝑋𝑣 ∥𝑑𝑢𝑑𝑣,
with respect to𝑋 (𝑢, 𝑣). Locally, we have the normal map 𝑁 : 𝑋 (𝑈 ) → S2, and so we can consider
the smooth map 𝑁 ◦𝑋 : 𝑈 → S2. It follows that infinitesimal area form on the sphere is given by

𝑑𝐴S2 = ∥𝑁𝑢 × 𝑁𝑣 ∥𝑑𝑢𝑑𝑣,
with respect to 𝑁 (𝑢, 𝑣). Recall, in §3.2 on area, we showed that

∥𝑁𝑢 × 𝑁𝑣 ∥ =
��det𝑑𝑁 (𝑢,𝑣)

�� · ∥𝑋𝑢 × 𝑋𝑣 ∥ = |𝐾 | · ∥𝑋𝑢 × 𝑋𝑣 ∥,
and therefore, the size of the Gaussian curvature can be thought of as the distortion of the map
𝑑𝐴𝑆 ↦→ 𝑑𝐴S2 induced by the Gauss map. By integrating this quantity up and taking limits, we
have the following lemma.

Lemma 4.5. Let 𝑆 be a regular surface and 𝑋 : 𝑈 → 𝑆 local coordinates about 𝑝 ∈ 𝑆 . Suppose
𝑝 ∈ 𝐵𝑛 ⊆ 𝑋 (𝑈 ) are sequence of compact subsets on the surface with

lim
𝑛→∞

sup
𝑞∈𝐵𝑛

∥𝑝 − 𝑞∥ = 0.

Then the size of the Gaussian curvature at 𝑝 is given by the limiting ratio of the areas

|𝐾 (𝑝) | = lim
𝑛→∞

∫
𝑁 (𝐵𝑛 ) 𝑑𝐴S2∫
𝐵𝑛
𝑑𝐴𝑆

.

Proof. Let 𝑋 (𝑈𝑛) = 𝐵𝑛, so that by the discussion previous to the lemma, we have that the ratio is
given in local coordinates as∫

𝑁 (𝐵𝑛 ) 𝑑𝐴S2∫
𝐵𝑛
𝑑𝐴𝑆

=

∫
𝑈𝑛

∥𝑁𝑢 × 𝑁𝑣 ∥𝑑𝑢𝑑𝑣∫
𝑈𝑛

∥𝑋𝑢 × 𝑋𝑣 ∥𝑑𝑢𝑑𝑣
=

∫
𝑈𝑛

|𝐾 (𝑢, 𝑣) | · ∥𝑋𝑢 × 𝑋𝑣 ∥𝑑𝑢𝑑𝑣∫
𝑈𝑛

∥𝑋𝑢 × 𝑋𝑣 ∥𝑑𝑢𝑑𝑣
.

In particular, we have�����
∫
𝑁 (𝐵𝑛 ) 𝑑𝐴S2∫
𝐵𝑛
𝑑𝐴𝑆

− |𝐾 (𝑝) |
����� =

�����
∫
𝑈𝑛

( |𝐾 (𝑢, 𝑣) | − |𝐾 (𝑝) |) · ∥𝑋𝑢 × 𝑋𝑣 ∥𝑑𝑢𝑑𝑣∫
𝑈𝑛

∥𝑋𝑢 × 𝑋𝑣 ∥𝑑𝑢𝑑𝑣

�����
≤

∫
𝑈𝑛

| |𝐾 (𝑢, 𝑣) | − |𝐾 (𝑝) | | · ∥𝑋𝑢 × 𝑋𝑣 ∥𝑑𝑢𝑑𝑣∫
𝑈𝑛

∥𝑋𝑢 × 𝑋𝑣 ∥𝑑𝑢𝑑𝑣
≤ ∥𝐾 (𝑢, 𝑣) − 𝐾 (𝑝)∥𝐿∞ (𝑈𝑛 ) .

Since 𝐾 is smooth, taking 𝑛 ↑ ∞, the right hand size is null and the conclusion follows.
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Example 4.6. The previous lemma gives us another interpretation of why the cylinder 𝐶 has zero
Gaussian curvature: indeed, the Gauss map of a cylinder traces out the equator 𝑁 (𝐶) = S1 ⊆ S2,
and since the area of the equator is zero inside the sphere, the Gaussian curvature 𝐾 ≡ 0 on 𝐶.

□

4.2 Principal curvatures

We return to the principal curvatures 𝜅1, 𝜅2 : 𝑆 → R defined at each point 𝑝 ∈ 𝑆 to be the
eigenvalues (with corresponding orthonormal eigenvectors 𝑒1, 𝑒2 ∈ 𝑇𝑝𝑆) of the shape operator
−𝑑𝑁𝑝 .

Consider a smooth regular curve 𝛾 : 𝐼 → 𝑆 parameterised by arc-length inside of our surface.
For each 𝑠 ∈ 𝐼 , the derivative 𝜏𝛾 (𝑠 ) := 𝛾 ′(𝑠) is a unit vector laying within 𝑇𝛾 (𝑠 )𝑆 . If 𝑁𝛾 (𝑠 )
denotes the unit normal vector to 𝑆 at 𝛾 (𝑠), then the triple {𝜏𝛾 (𝑠 ) , 𝑁𝛾 (𝑠 ) ,𝐺𝛾 (𝑠 ) := 𝑁𝛾 (𝑠 ) × 𝜏𝛾 (𝑠 ) } is
a orthonormal basis of R3, with 𝐺𝛾 (𝑠 ) ∈ 𝑇𝛾 (𝑠 )𝑆 for each 𝑠 ∈ 𝐼 . In particular, the second derivative
𝛾 ′′(𝑠) is then a vector laying within the span of 𝐺 and 𝑁 at 𝛾 (𝑠).

Definition 4.7. With the above set-up, define the smooth functions 𝜅𝐺 , 𝜅𝑁 : 𝐼 → R via the
relationship

𝛾 ′′(𝑠) = 𝜅𝐺 (𝑠) ·𝐺𝛾 (𝑠 ) + 𝜅𝑁 (𝑠) · 𝑁𝛾 (𝑠 ) , ∀𝑠 ∈ 𝐼 . (4.2)

We refer to the values 𝜅𝐺 (𝑠) and 𝜅𝑁 (𝑠) as the geodesic curvature and normal curvature of 𝛾 at 𝑠
respectively.

Remark.

• Changing the orientation on 𝑆 will change the sign of both 𝜅𝐺 and 𝜅𝑁 .

• For a fixed Gauss map 𝑁 , changing the direction in which we traverse the curve does not
change 𝛾 ′′, but will swap the sign of 𝜏 and hence 𝐺 . So reversing the direction changes the
sign of 𝜅𝐺 , but not 𝜅𝑁 . i.e. 𝜅𝑁 is independent of the direction the curve 𝛾 (𝐼 ) is traversed.

• Since the vector 𝐺𝛾 (𝑠 ) ⊥ 𝑁𝛾 (𝑠 ) everywhere, taking the norm of (4.2) we find that

𝜅 (𝑠)2 = 𝜅𝐺 (𝑠)2 + 𝜅𝑁 (𝑠)2,

where 𝜅 (𝑠) denotes the usual curvature of the curve 𝛾 as a curve in R3. In particular, we if
choose 𝜃 to be the angle formed between 𝜈 , the normal vector of the curve 𝛾 , and 𝑁 , the
normal vector to 𝑆 (that is, cos(𝜃 ) = ⟨𝜈, 𝑁 ⟩), then it is true that

𝜅𝑁 = 𝜅 cos𝜃, 𝜅𝐺 = 𝜅 sin𝜃 .

Example 4.8. Given any smooth regular curve 𝛾 : 𝐼 → 𝑃 in an affine plane 𝑃 , we see that the
normal to the curve 𝜈 is always perpendicular to the normal to the plane 𝑃 , and hence 𝜅𝑁 ≡ 0
and 𝜅𝐺 ≡ 𝜅.
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All of the curvature of 𝛾 is due to its bending within 𝑃 , and not due to the bending of 𝑃 in the
ambient space.

Example 4.9. Consider the equator 𝛾 : R → S2, 𝛾 (𝑠) = (cos 𝑠, sin 𝑠, 0). In this example, the
normal to the curve 𝜈 is parallel to the normal to the sphere 𝑁 , and hence 𝜅𝐺 = 0 and 𝜅𝑁 ≡ 𝜅.

All of the curvature of 𝛾 is due to the bending of S2 in the ambient space and not due to its
bending within S2.

The following lemma shows that the normal curvature of a curve depends only on its first order
information. That is, for any two curves 𝛾, 𝜂 : 𝐼 → 𝑆 with 𝛾 (𝑠0) = 𝜂 (𝑠0) and 𝛾 ′(𝑠0) = 𝜂′(𝑠0), then
the normal curvatures of 𝛾 and 𝜂 agree at 𝑠0.

Lemma 4.10. The normal curvature 𝜅𝑁 of a curve 𝛾 : 𝐼 → 𝑆 depends only on the tangent vector
to the curve 𝛾 . Moreover, the normal curvature is bounded by the principal curvatures at each
point

𝜅2(𝑠) ≤ 𝜅𝑁 (𝑠) ≤ 𝜅1(𝑠), ∀𝑠 ∈ 𝐼 .

Proof. Recall, the normal curvature is given by the inner product

𝜅𝑁 (𝑠) =
〈
𝛾 ′′(𝑠), 𝑁𝛾 (𝑠 )

〉
= ⟨𝛾 ′(𝑠), (𝑁 ◦ 𝛾)′(𝑠)⟩
=

〈
−𝑑𝑁𝛾 (𝑠 ) · 𝛾 ′(𝑠), 𝛾 ′(𝑠)

〉
= ℎ𝛾 (𝑠 ) (𝛾 ′(𝑠)),

which depends only on 𝛾 (𝑠) and 𝛾 ′(𝑠), showing the first part. The second part follows from the
previously shown fact that the second fundamental form ℎ𝑝 is bounded by the principal curvatures
on the unit circle in 𝑇𝑝𝑆 . □

Definition 4.11. A point 𝑝 ∈ 𝑆 is called umbilic if 𝜅1(𝑝) = 𝜅2(𝑝).

Lemma 4.12. Let 𝑆 be a regular surface and 𝑋 : 𝑈 → 𝑆 be local coordinates on 𝑆 with 𝑈
connected. If for some function 𝜆 : 𝑋 (𝑈 ) → R the following equation holds

−𝑑𝑁𝑝 = 𝜆(𝑝) · id𝑇𝑝𝑆 , ∀𝑝 ∈ 𝑋 (𝑈 ),

then 𝑋 (𝑈 ) is contained either within a plane or a sphere. Such a region 𝑋 (𝑈 ) is called umbilical.

Remark. A priori, the function 𝜆 given in the lemma can change from point to point, even
discontinuously. The fact 𝜆 is constant is a consequence of the lemma.

Proof. Since we may write 𝜆(𝑝) = ⟨−𝑑𝑁𝑝 ·𝑋𝑢 ,𝑋𝑢⟩
∥𝑋𝑢 ∥2 , it follows that 𝜆 is a smooth function. Next,

differentiating the identities
−𝑁𝑢 = 𝜆 · 𝑋𝑢, −𝑁𝑣 = 𝜆 · 𝑋𝑣,

we find that
−𝑁𝑢𝑣 = 𝜆𝑣 · 𝑋𝑢 + 𝜆 · 𝑋𝑢𝑣, −𝑁𝑣𝑢 = 𝜆𝑢 · 𝑋𝑣 + 𝜆 · 𝑋𝑣𝑢 .
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As 𝑋, 𝑁 are both smooth, partial derivatives commute, and we conclude

𝜆𝑣 · 𝑋𝑢 − 𝜆𝑢 · 𝑋𝑣 = 0.

But since 𝑋𝑢, 𝑋𝑣 are linearly independent, this implies 𝜆𝑢 = 𝜆𝑣 = 0 on 𝑋 (𝑈 ) connected, and hence
𝜆 is constant. In particular, it follows that the quantity 𝑁 + 𝜆𝑋 is constant. We now split the final
analysis into two cases

• If 𝜆 ≡ 0, then the normal vector is constant, and hence 𝑋 (𝑈 ) is contained within the
hyperplane with normal 𝑁 passing through a point 𝑋 (𝑝).

• Otherwise, we label the fixed vector 𝜆𝑋0 := 𝑁 + 𝜆𝑋 . Rearranging gives 𝑋 = 𝑋0 + 𝜆−1𝑁 , or
𝑋 lies in the sphere 𝑋0 + 𝜆−1S2. □

Corollary. If 𝑆 is a regular connected umbilical surface: there exists a function 𝜆 : 𝑆 → R such
that

−𝑑𝑁𝑝 = 𝜆(𝑝) · id𝑇𝑝𝑆 , ∀𝑝 ∈ 𝑆,

then 𝑆 is contained with a plane or a sphere.

Proof. Fix 𝑝0 ∈ 𝑆 . By the previous lemma applied to the connected components of coordinate
charts (which cover 𝑆), we see that 𝜆 is a smooth function. Note that the set

Ω = {𝑝 ∈ 𝑆 : 𝜆(𝑝) = 𝜆(𝑝0)}

is a non-empty subset of 𝑆 . It is closed since 𝜆 is smooth. By the previous lemma, it is open. Since
𝑆 is connected, we conclude Ω = 𝑆 and 𝜆 is constant. The result then follows via an identical
argument. □

4.3 Mean curvature

We now find a geometric interpretation of the mean curvature via variations of regular surfaces.
In particular, we look at the case when the mean curvature vanishes

Definition 4.13. A regular surface 𝑆 is called minimal if 𝐻 ≡ 0 everywhere.

Let 𝑆 ⊆ R3 be an oriented regular surface with Gauss map 𝑁 : 𝑆 → S2. We will consider
compactly supported variations of 𝑆 . More precisely, fix a compactly supported smooth function
𝑓 ∈ 𝐶∞

𝑐 (𝑆), and cover the support of 𝑓 by coordinate charts. For simplicity, we will assume that
there is a single coordinate chart 𝑋 : 𝑈 → 𝑆 such that supp(𝑓 ) ⋐ 𝑋 (𝑈 ). We then look at the
variation 𝑋 : 𝑈 × R → R3, given by

𝑋 (𝑢, 𝑣, 𝑡) := 𝑋 (𝑢, 𝑣) + 𝑡 𝑓 (𝑢, 𝑣) · 𝑁 (𝑢,𝑣) .

Claim. There exists 𝜀 > 0 sufficiently small such that 𝑋 (·, 𝑡) is an immersion for every |𝑡 | < 𝜀.
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Proof of Claim. Calculating the partial derivatives of 𝑋 (·, 𝑡) : 𝑈 → R3 we have

𝑋𝑢 (·, 𝑡) = 𝑋𝑢 + 𝑡 𝑓𝑢𝑁 + 𝑡 𝑓 𝑁𝑢,
𝑋𝑣 (·, 𝑡) = 𝑋𝑣 + 𝑡 𝑓𝑣𝑁 + 𝑡 𝑓 𝑁𝑣,

and therefore, as 𝑓 , 𝑁 are smooth on supp(𝑓 ) compact,

𝑋𝑢 (·, 𝑡) × 𝑋𝑣 (·, 𝑡) = 𝑋𝑢 × 𝑋𝑣 +𝑂 (𝑡),

which is non-zero for 𝑡 sufficiently small. i.e. the vectors 𝑋𝑢 (·, 𝑡), 𝑋𝑣 (·, 𝑡) are linearly independent.
□

Exercise. Show that for 𝑡 sufficiently small, 𝑋 (·, 𝑡) is a homeomorphism onto its image.

Combining this exercise with the previous claim, we see that for |𝑡 | < 𝜀, 𝑋 (·, 𝑡) defines local
coordinates for a new regular surface 𝑆𝑡 ⊆ R3. Consider the family of first fundamental forms
𝑔(𝑡) on 𝑆𝑡 . With respect to the local coordinates 𝑋 (·, 𝑡) we have

𝑔𝑖 𝑗 (𝑡) =
〈
𝑋𝑖 (·, 𝑡), 𝑋 𝑗 (·, 𝑡)

〉
=

〈
𝑋𝑖 + 𝑡 𝑓𝑖𝑁 + 𝑡 𝑓 𝑁𝑖 , 𝑋 𝑗 + 𝑡 𝑓𝑗𝑁 + 𝑡 𝑓 𝑁 𝑗

〉
= 𝑔𝑖 𝑗 + 𝑡 𝑓

(〈
𝑁𝑖 , 𝑋 𝑗

〉
+

〈
𝑁 𝑗 , 𝑋𝑖

〉)
+𝑂 (𝑡2)

= 𝑔𝑖 𝑗 − 2𝑡 𝑓 ℎ𝑖 𝑗 +𝑂 (𝑡2),

which we write as matrix formula

[𝑔(𝑡)]�̂� ( ·,𝑡 ) = [𝑔]𝑋 − 2𝑡 𝑓 [ℎ]𝑋 +𝑂 (𝑡2) . (4.3)

We want to look at how the area is changing under this compact variation, and so we need the
following result.

Claim. For any 𝑛 × 𝑛 matrix 𝑀 ,

𝑑

𝑑𝑡
det(𝐼𝑛 + 𝑡𝑀) |𝑡=0 = tr(𝑀) .

Proof of Claim. Since all of the off-diagonal entries of the matrix 𝐼𝑛 + 𝑡𝑀 are 𝑂 (𝑡), we have

det(𝐼𝑛 + 𝑡𝑀) =
𝑛∏
𝑖=1

(1 + 𝑡𝑀𝑖𝑖) +𝑂 (𝑡2)

= 1 + 𝑡
𝑛∑︁
𝑖=1

𝑀𝑖𝑖︸ ︷︷ ︸
tr(𝑀 )

+𝑂 (𝑡2) . □
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Applying the determinant to (4.3) we have

det[𝑔(𝑡)]�̂� ( ·,𝑡 ) = det( [𝑔]𝑋 − 2𝑡 𝑓 [ℎ]𝑋 +𝑂 (𝑡2))
= det( [𝑔]𝑋 − 2𝑡 𝑓 [ℎ]𝑋 ) +𝑂 (𝑡2)
= det[𝑔]𝑋 · det(𝐼 − 2𝑡 𝑓 [𝑔]−1𝑋 [ℎ]𝑋 ) +𝑂 (𝑡2),

and so by the claim and equation (3.9)

𝑑

𝑑𝑡
det[𝑔(𝑡)]�̂� ( ·,𝑡 ) |𝑡=0 = −2𝑓 det[𝑔]𝑋 tr( [𝑔]−1𝑋 [ℎ]𝑋 )

= −2𝑓 det[𝑔]𝑋 tr( [−𝑑𝑁 ]𝑋 )
= −2𝑓 𝐻 det[𝑔]𝑋

On the level of infinitesimal area forms, this corresponds to the relationship

𝑑

𝑑𝑡
𝑑𝐴𝑆𝑡 |𝑡=0 =

𝑑

𝑑𝑡

√︃
det[𝑔(𝑡)]�̂� ( ·,𝑡 ) |𝑡=0 𝑑𝑢𝑑𝑣

= −𝑓 𝐻
√︁
det[𝑔]𝑋 𝑑𝑢𝑑𝑣

= −𝑓 𝐻𝑑𝐴𝑆 .

Integrating this quantity up, we have the first variation formula for the area of an oriented regular
surface under compactly supported variations.

Theorem 4.14. Let 𝑆 be an oriented regular surface with Gauss map 𝑁 : 𝑆 → S2. For any
𝑓 ∈ 𝐶∞

𝑐 (𝑆), let 𝑆𝑡 denote the regular surfaces generated by variations along 𝑓 𝑁 as above. Then
we have the formula

𝑑

𝑑𝑡

∫
supp(𝑓 )

𝑑𝐴𝑆𝑡 |𝑡=0 =
∫
supp(𝑓 )

−𝑓 𝐻𝑑𝐴𝑆 .

Corollary. An oriented regular surface is a critical point of the area functional under compactly
supported variations if and only if it is minimal.

Proof. The if direction follows immediately from Theorem 4.14. For the reverse direction,
suppose there is a point 𝑞 ∈ 𝑆 with 𝐻 (𝑞) ≠ 0. Let 𝜑 be any smooth compactly supported non-
negative function on 𝑆 with 𝜑 (𝑞) > 0 and let 𝑓 = 𝜑𝐻 ∈ 𝐶∞

𝑐 (𝑆). Then, considering the variation
with respect to 𝑓 , Theorem 4.14 implies that

𝑑

𝑑𝑡

∫
supp(𝑓 )

𝑑𝐴𝑆𝑡 |𝑡=0 =
∫
supp(𝜑 )

−𝜑𝐻 2𝑑𝐴𝑆 < 0. □

There are special coordinates on any regular surface under which checking minimality is much
simpler.

Definition 4.15. Local coordinates 𝑋 : 𝑈 → 𝑆 are called isothermal coordinates if there exists a
smooth function 𝜆 : 𝑈 → R such that the first fundamental form is given in these local coordinates
by

[𝑔(𝑢,𝑣) ]𝑋 =

(
𝜆2(𝑢, 𝑣) 0

0 𝜆2(𝑢, 𝑣)

)
, ∀(𝑢, 𝑣) ∈ 𝑈 .
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Fact: By solving a local system of partial differential equations, one can show that every
regular surface 𝑆 can be covered by isothermal coordinate charts. Recall the following definition
of a harmonic function

Definition 4.16. A function 𝑋 : 𝑈 ⊆ R2 → R3 is harmonic if

Δ𝑋 (𝑢, 𝑣) := 𝑋𝑢𝑢 (𝑢, 𝑣) + 𝑋𝑣𝑣 (𝑢, 𝑣) = 0, ∀(𝑢, 𝑣) ∈ 𝑈 .

Exercise. Let 𝑆 be a regular surface. Then 𝑆 is minimal if and only if, all isothermal coordinates
𝑋 : 𝑈 → 𝑆 on 𝑆 are harmonic.

Example 4.17. For the Catenoid 𝐶, we have the parameterisation

𝑋 (𝑢, 𝑣) = (cosh 𝑣 cos𝑢, cosh 𝑣 sin𝑢, 𝑣), (𝑢, 𝑣) ∈ (0, 2𝜋) × R.

Recall from the midterm, the first fundamental form with respect to these coordinate is given by

𝑔 =

(
cosh2 𝑣 0

0 cosh2 𝑣

)
,

and therefore are isothermal coordinates. Then we find that

Δ𝑋 = 𝑋𝑢𝑢 + 𝑋𝑣𝑣 = (− cosh 𝑣 cos𝑢,− cosh 𝑣 sin𝑢, 0) + (cosh 𝑣 cos𝑢, cosh 𝑣 sin𝑢, 0) = (0, 0, 0),

and so 𝐶 is a minimal surface.

Example 4.18. For the Helicoid 𝐻 , we have the parameterisation

𝑋 (𝑢, 𝑣) = (sinh 𝑣 cos𝑢, sinh 𝑣 sin𝑢,𝑢), (𝑢, 𝑣) ∈ R2.

The first fundamental form with respect to these coordinates is again

𝑔 =

(
cosh2 𝑣 0

0 cosh2 𝑣

)
,

and therefore these are isothermal coordinates. Then we find that

Δ𝑋 = 𝑋𝑢𝑢 + 𝑋𝑣𝑣 = (− sinh 𝑣 cos𝑢,− sinh 𝑣 sin𝑢, 0) + (sinh 𝑣 cos𝑢, sinh 𝑣 sin𝑢, 0) = (0, 0, 0),

and so 𝐻 is also a minimal surface.

4.4 Theorem Egregium

We split the geometric properties of a regular surface into two cases:

• Intrinsic: depends only on the first fundamental form 𝑔.

• Extrinsic: depends on how 𝑆 is embedded inside R3.
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Example 4.19. Consider the cylinder 𝐶 and the plane 𝑃 . We can parameterise the cylinder by
𝑋 (𝑢, 𝑣) = (cos𝑢, sin𝑢, 𝑣), and the plane by 𝑌 (𝑢, 𝑣) = (𝑢, 𝑣, 0). It follows that

𝑋𝑢 = (− sin𝑢, cos𝑢, 0), 𝑋𝑣 = (0, 0, 1), 𝑌𝑢 = (1, 0, 0), 𝑌𝑣 = (0, 1, 0),

and hence
[𝑔]𝑋 = 𝐼2 = [𝑔]𝑌 .

Therefore, lengths, angles and areas are identical within these coordinate charts. However, the
mean curvature of the cylinder is non-zero and it is zero for the plane, and so the mean curvature
is extrinsic!

Question: Is the Gaussian curvature 𝐾 intrinsic?

Recall that the formula for the Gaussian curvature involves both the first and second fundamental
forms

𝐾 (𝑝) =
detℎ𝑝
det𝑔𝑝

,

and as the mean curvature is extrinsic, it is tempting to conjecture that the Gaussian curvature is
extrinsic also. However, Gauss’s remarkable theorem is that 𝐾 is in fact intrinsic.

Theorem 4.20 (Theorem Egregium). The Gaussian curvature 𝐾 of a regular surface is intrinsic.

Our goal is to now prove Gauss’s Theorem Ergregium. Throughout this section (and the rest of
the course) we make the following short hand convention which is commonplace in the subject.

Einstein summation convention: repeated indices within an equation are summed!

Example 4.21. The length of a curve with respect to the first fundamental form is expressed in
the Einstein summation convention as

𝐿(𝛾 | [𝑎,𝑏 ]) =
∫ 𝑏

𝑎

(
𝑔𝑖 𝑗 (𝛾 (𝑡))𝑢′𝑖 (𝑡)𝑢′𝑗 (𝑡)

) 1
2
𝑑𝑡 .

Given local coordinates 𝑋 : 𝑈 → 𝑆 , consider the vector 𝑋𝑖 𝑗 ∈ R3 expressed with respect to the
basis {𝑋1, 𝑋2, 𝑁 }. Since

〈
𝑋𝑖 𝑗 , 𝑁

〉
= ℎ𝑖 𝑗 , we can find coefficients Γ1𝑖 𝑗 , Γ

2
𝑖 𝑗 ∈ R such that

𝑋𝑖 𝑗 = ℎ𝑖 𝑗𝑁 + Γ𝑘𝑖 𝑗𝑋𝑘 .

Definition 4.22. Γ𝑘𝑖 𝑗 are known as the Christoffel symbols with respect to the coordinates 𝑋 .

Remark. The Christoffel symbols come with natural symmetry. Since 𝑋 is smooth, 𝑋𝑖 𝑗 = 𝑋 𝑗𝑖 ,
and so

ℎ𝑖 𝑗𝑁 + Γ𝑘𝑖 𝑗𝑋𝑘 = ℎ 𝑗𝑖𝑁 + Γ𝑘𝑗𝑖𝑋𝑘 .

In particular, by the linear independence of the vectors 𝑋1, 𝑋2, 𝑁 we can equate coefficients to
find Γ𝑘𝑖 𝑗 = Γ𝑘𝑗𝑖 .
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Lemma 4.23. The Christoffel symbols (and thus the second derivative of 𝑋 projected onto the
tangent plane) depend only on the first order information of 𝑔

Γ𝑘𝑖 𝑗 =
1
2
𝑔𝑘𝑙

(
𝜕𝑖𝑔 𝑗𝑙 + 𝜕𝑗𝑔𝑖𝑙 − 𝜕𝑙𝑔𝑖 𝑗

)
, (4.4)

where 𝑔𝑖 𝑗 are the coefficients of the inverse of the matrix [𝑔]𝑋 , i.e 𝑔𝑖𝑘𝑔𝑘 𝑗 = 𝛿𝑖 𝑗 .

Proof. Since

𝜕𝑖𝑔 𝑗𝑙 = 𝜕𝑖 ·
〈
𝑋 𝑗 , 𝑋𝑙

〉
=

〈
𝑋𝑖 𝑗 , 𝑋𝑙

〉
+

〈
𝑋 𝑗 , 𝑋𝑖𝑙

〉
= 𝑔𝑙𝑝 · Γ𝑝𝑖 𝑗 + 𝑔 𝑗𝑝 · Γ

𝑝

𝑖𝑙
,

the term in the bracket on the right hand side of (4.4) becomes

𝜕𝑖𝑔 𝑗𝑙 + 𝜕𝑗𝑔𝑖𝑙 − 𝜕𝑙𝑔𝑖 𝑗 = 𝑔𝑙𝑝 · Γ𝑝𝑖 𝑗 + 𝑔 𝑗𝑝 · Γ
𝑝

𝑖𝑙
+ 𝑔𝑙𝑝 · Γ𝑝𝑖 𝑗 + 𝑔𝑖𝑝 · Γ

𝑝

𝑗𝑙
− 𝑔 𝑗𝑝 · Γ𝑝𝑖𝑙 − 𝑔𝑖𝑝 · Γ

𝑝

𝑗𝑙

= 2𝑔𝑙𝑝 · Γ𝑝𝑖 𝑗 .

It follows that

Γ𝑘𝑖 𝑗 = 𝛿𝑘𝑝 · Γ
𝑝

𝑖 𝑗
= 𝑔𝑘𝑙 · 𝑔𝑙𝑝 · Γ𝑝𝑖 𝑗 =

1
2
𝑔𝑘𝑙

(
𝜕𝑖𝑔 𝑗𝑙 + 𝜕𝑗𝑔𝑖𝑙 − 𝜕𝑙𝑔𝑖 𝑗

)
.

□

Lemma 4.24. The third order derivatives of 𝑋 satisfy the following equation

𝑋𝑖 𝑗𝑘 =

(
𝜕𝑘ℎ𝑖 𝑗 + Γ

𝑝

𝑖 𝑗
ℎ𝑝𝑘

)
· 𝑁 +

(
𝜕𝑘Γ

𝑝

𝑖 𝑗
− ℎ𝑖 𝑗ℎ𝑘𝑞𝑔𝑞𝑝 + Γ

𝑞

𝑖 𝑗
Γ
𝑝

𝑘𝑞

)
· 𝑋𝑝 (4.5)

Proof. Using the definition of the Christoffel symbols and the product rule we have

𝑋𝑖 𝑗𝑘 = 𝜕𝑘 ·
(
ℎ𝑖 𝑗𝑁 + Γ

𝑝

𝑖 𝑗
𝑋𝑝

)
= 𝜕𝑘ℎ𝑖 𝑗 · 𝑁 + ℎ𝑖 𝑗 · 𝑁𝑘 + 𝜕𝑘 · Γ𝑝𝑖 𝑗 · 𝑋𝑝 + Γ

𝑞

𝑖 𝑗
· 𝑋𝑘𝑞

= 𝜕𝑘ℎ𝑖 𝑗 · 𝑁 + ℎ𝑖 𝑗 · 𝑁𝑘 + 𝜕𝑘Γ𝑝𝑖 𝑗 · 𝑋𝑝 + Γ
𝑞

𝑖 𝑗

(
ℎ𝑘𝑞 · 𝑁 + Γ

𝑝

𝑘𝑞
· 𝑋𝑝

)
=

(
𝜕𝑘ℎ𝑖 𝑗 + Γ

𝑝

𝑖 𝑗
ℎ𝑝𝑘

)
· 𝑁 +

(
𝜕𝑘Γ

𝑝

𝑖 𝑗
+ Γ

𝑞

𝑖 𝑗
Γ
𝑝

𝑘𝑞

)
· 𝑋𝑝 + ℎ𝑖 𝑗 · 𝑁𝑘 .

Since 𝑁𝑘 is perpendicular to 𝑁 , it has the form 𝑁𝑘 = 𝛼𝑝𝑋𝑝 for some coefficients 𝛼𝑝 ∈ R. Taking
the inner product with 𝑋𝑞 we have

𝛼𝑝 = 𝛼𝑟𝛿𝑟𝑝 = 𝛼𝑟𝑔𝑟𝑞𝑔
𝑞𝑝 =

〈
𝑁𝑘 , 𝑋𝑞

〉
𝑔𝑞𝑝 = −

〈
𝑁,𝑋𝑘𝑞

〉
𝑔𝑞𝑝 = −ℎ𝑘𝑞𝑔𝑞𝑝 ,

and therefore
𝑁𝑘 = −ℎ𝑘𝑞𝑔𝑞𝑝 · 𝑋𝑝 . □
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Claim. For any 2 × 2 matrix 𝑀 , we have

tr(𝑀)2 − tr(𝑀2) = 2 det(𝑀) .

Proof of Claim.

tr(𝑀)2 − tr(𝑀2) = (𝑀11 +𝑀22)2 − ((𝑀2)11 + (𝑀2)22)
= 𝑀2

11 +𝑀2
22 + 2𝑀11𝑀22 − (𝑀2

11 + 2𝑀12𝑀21 +𝑀2
22)

= 2(𝑀11𝑀22 −𝑀12𝑀21) = 2 det(𝑀) . □

We are now ready to put everything together and prove Gauss’s Theorem Egregium.

Proof of Theorem 4.20. Since 𝑋 is smooth, partial derivatives commute, and so 𝑋𝑖 𝑗𝑘 = 𝑋𝑖𝑘 𝑗 . In
particular, 〈

𝑋𝑖 𝑗𝑘 , 𝑋𝑝
〉
=

〈
𝑋𝑖𝑘 𝑗 , 𝑋𝑝

〉
,

which by Lemma 4.24 implies

𝜕𝑘Γ
𝑝

𝑖 𝑗
− ℎ𝑖 𝑗ℎ𝑘𝑞𝑔𝑞𝑝 + Γ

𝑞

𝑖 𝑗
Γ
𝑝

𝑘𝑞
= 𝜕𝑗Γ

𝑝

𝑖𝑘
− ℎ𝑖𝑘ℎ 𝑗𝑞𝑔𝑞𝑝 + Γ

𝑞

𝑖𝑘
Γ
𝑝

𝑗𝑞
. (4.6)

Letting 𝑝 = 𝑘 and summing over 𝑘 = 1, 2 in (4.6) we have

𝜕𝑘Γ
𝑘
𝑖 𝑗 − 𝜕𝑗Γ𝑘𝑖𝑘 + Γ

𝑞

𝑖 𝑗
Γ𝑘
𝑘𝑞

− Γ
𝑞

𝑖𝑘
Γ𝑘𝑗𝑞 = ℎ𝑖 𝑗ℎ𝑘𝑞𝑔

𝑞𝑘 − ℎ𝑖𝑘ℎ 𝑗𝑞𝑔𝑞𝑘 ,

which multiplying by 𝑔𝑖 𝑗 implies

𝑔𝑖 𝑗
(
𝜕𝑘Γ

𝑘
𝑖 𝑗 − 𝜕𝑗Γ𝑘𝑖𝑘 + Γ

𝑞

𝑖 𝑗
Γ𝑘
𝑘𝑞

− Γ
𝑞

𝑖𝑘
Γ𝑘𝑗𝑞

)
= (𝑔𝑖 𝑗ℎ 𝑗𝑖) (𝑔𝑞𝑘ℎ𝑘𝑞) − (𝑔 𝑗𝑖ℎ𝑖𝑘 ) (𝑔𝑘𝑞ℎ𝑞𝑗 )

= tr(−𝑑𝑁𝑝)2 − tr(−𝑑𝑁 2
𝑝 ) = 2𝐾 (𝑝).

Therefore
𝐾 (𝑝) = 1

2
𝑔𝑖 𝑗

(
𝜕𝑘Γ

𝑘
𝑖 𝑗 − 𝜕𝑗Γ𝑘𝑖𝑘 + Γ

𝑞

𝑖 𝑗
Γ𝑘
𝑘𝑞

− Γ
𝑞

𝑖𝑘
Γ𝑘𝑗𝑞

)
,

and so the Gaussian curvature depends only on the second order information of 𝑔, and is thus
intrinsic. □

With Theorem 4.20 now in our toolbox, it is desirable to have a more robust notion for when
two surfaces have the same first fundmental form locally.

Definition 4.25. Given two regular surfaces 𝑆, 𝑆 ⊆ R3, an isometry between 𝑆 and 𝑆 is a
diffeomorphism 𝜑 : 𝑆 → 𝑆 such that

𝑔𝑝 (𝑢, 𝑣) = 𝑔𝜑 (𝑝 ) (𝑑𝜑𝑝 · 𝑢,𝑑𝜑𝑝 · 𝑣), ∀𝑝 ∈ 𝑆, ∀𝑢, 𝑣 ∈ 𝑇𝑝𝑆. (4.7)

In this case 𝑆 and 𝑆 are said to be isomorphic.

Lemma 4.26. If a diffeomorphism preserves lengths, then it is an isometry. That is, equation
(4.7) is equivalent to

𝑔𝑝 (𝑢) = 𝑔𝜑 (𝑝 ) (𝑑𝜑𝑝 · 𝑢), ∀𝑝 ∈ 𝑆, ∀𝑢 ∈ 𝑇𝑝𝑆. (4.8)
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Proof. (4.7) implies (4.8) is trivial. For the converse, fix 𝑢, 𝑣 ∈ 𝑇𝑝𝑆 and let 𝑢 (𝑡) = 𝑢 + 𝑡𝑣 for 𝑡 ∈ R.
Then, as 𝑑𝜑𝑝 is a linear map, we have

𝑑

𝑑𝑡
𝑔𝑝 (𝑢 (𝑡)) |𝑡=0 = 2 ⟨𝑢 (0), 𝑢′(0)⟩ = 2𝑔𝑝 (𝑢, 𝑣)

𝑑

𝑑𝑡
𝑔𝜑 (𝑝 ) (𝑑𝜑𝑝 · 𝑢 (𝑡)) |𝑡=0 = 2

〈
𝑑𝜑𝑝 · 𝑢 (0), 𝑑𝜑𝑝 · 𝑢′(0)

〉
= 2𝑔𝜑 (𝑝 ) (𝑑𝜑𝑝 · 𝑢,𝑑𝜑𝑝 · 𝑣).

Since the left hand side of these two formulas are the same, (4.7) follows. □

Definition 4.27. A map 𝜑 : 𝑉 ⊆ 𝑆 → 𝑆 on an open neighbourhood 𝑉 in 𝑆 is a local isometry if
there exists an open set �̃� ⊆ 𝑆 such that 𝜑 : 𝑉 → �̃� is an isometry.

Example 4.28. The cylinder is not isometric to the plane. However, every point in the cylinder
admits a neighbourhood which is isometric to an open subset of the plane, and so the cylinder is
locally isometric to the plane everywhere.

By its definition, a local isometry between two surfaces implies they have the same fundamental
forms locally. In fact, the converse holds, and so two surfaces have the same intrinsic information
(locally) iff they are (locally) isometric.

Lemma 4.29. Given regular surfaces 𝑆, 𝑆 with local coordinates 𝑋 : 𝑈 → 𝑆 , �̃� : 𝑈 → 𝑆 , if
𝑔𝑖 𝑗 = 𝑔𝑖 𝑗 on𝑈 , then the function

𝜑 := �̃� ◦ 𝑋 −1 : 𝑋 (𝑈 ) → 𝑆,

is a local isometry.

Proof. Fix 𝑝 ∈ 𝑋 (𝑈 ) and 𝑤 ∈ 𝑇𝑝𝑆 . Then 𝑤 = 𝑤𝑖 · 𝑋𝑖 for some coefficients 𝑤𝑖 ∈ R, and
𝑔𝑝 (𝑤) = 𝑔𝑖 𝑗𝑤𝑖𝑤 𝑗 . Recall that

𝑑𝜑𝑝 ·𝑤 = (𝜑 ◦ 𝛾)′(0),

where 𝛾 : (−𝜖, 𝜖) → 𝑋 (𝑈 ) is a curve such that 𝛾 (0) = 𝑝 and 𝛾 ′(0) = 𝑤 . Let 𝜂 = 𝑋 −1 ◦ 𝛾 :
(−𝜖, 𝜖) → 𝑈 , where now 𝜂′(0) = (𝑤1,𝑤2). 𝛾 and 𝜂 are then related in the following way

𝜑 ◦ 𝛾 = �̃� ◦ 𝑋 −1 ◦ 𝑋 ◦ 𝜂 = �̃� ◦ 𝜂,

and so
𝑑𝜑𝑝 ·𝑤 = (𝜑 ◦ 𝛾)′(0) = (�̃� ◦ 𝜂)′(0) = 𝑤𝑖�̃�𝑖 .

In particular
𝑔𝜑 (𝑝 ) (𝑑𝜑𝑝 ·𝑤) = 𝑔𝑖 𝑗𝑤𝑖𝑤 𝑗 ,

and by the assumption on the first fundamental forms, (4.8) holds and 𝜑 is an isometry. □

Corollary. The Gaussian curvature 𝐾 is invariant under local isometries. That is, if 𝜑 : 𝑉 ⊆
𝑆 → 𝑆 is a local isometry between regular surfaces, then

𝐾 (𝑝) = �̃� (𝜑 (𝑝)), ∀𝑝 ∈ 𝑉 .
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4.5 Covariant Derivatives

Given some local coordinates 𝑋 : 𝑈 → 𝑆 and a pair of smooth functions 𝑤1,𝑤2 : 𝑈 → R, the
function𝑊 : 𝑋 (𝑈 ) → R3 defined by

𝑊 (𝑋 (𝑢1, 𝑢2)) := 𝑤𝑖 (𝑢1, 𝑢2) · 𝑋𝑖 (𝑢1, 𝑢2),

is smooth with𝑊 (𝑝) ∈ 𝑇𝑝𝑆 for all 𝑝 ∈ 𝑋 (𝑈 ).

Definition 4.30. A smooth vector field𝑊 on a regular surface 𝑆 is a correspondence which
assigns to each point 𝑝 ∈ 𝑆 a tangent vector𝑊 (𝑝) ∈ 𝑇𝑝𝑆 , such that for any local coordinates
𝑋 : 𝑈 → 𝑆 , we can express

𝑊 ◦ 𝑋 (𝑢1, 𝑢2) = 𝑤𝑖 (𝑢1, 𝑢2) · 𝑋𝑖 (𝑢1, 𝑢2), ∀(𝑢1, 𝑢2) ∈ 𝑈 ,

for some smooth functions𝑤1,𝑤2 : 𝑈 → R. We denote this by𝑊 ∈ 𝐶∞(𝑇𝑆).

Example 4.31. Given some local coordinates 𝑋 : 𝑈 → 𝑆 , the image of the coordinates 𝑋 (𝑈 )
is itself a regular surface. Then, the coordinate vector fields 𝑋𝑖 ∈ 𝐶∞(𝑇𝑋 (𝑈 )) are by definition
smooth vector fields on 𝑋 (𝑈 ).

Question: Given𝑊 ∈ 𝐶∞(𝑇𝑆), 𝑝 ∈ 𝑆 and 𝑢 ∈ 𝑇𝑝𝑆 , can we find a reasonable intrinsic notion of
the variation of𝑊 in the direction of 𝑢 at 𝑝?

Flat case: In the case we are working in R𝑛, a smooth vector field𝑊 ∈ 𝐶∞(𝑇R𝑛) corresponds
to a smooth function𝑊 : R𝑛 → R𝑛

𝑊 (𝑥1, . . . , 𝑥𝑛) = (𝑤1(𝑥1, . . . , 𝑥𝑛), . . . ,𝑤𝑛 (𝑥1, . . . , 𝑥𝑛)) .

For any point 𝑝 ∈ R𝑛 and tangent vector 𝑢 ∈ 𝑇𝑝R𝑛 � R𝑛, the variation of𝑊 in the direction of 𝑢
at 𝑝 is the collection of directional derivatives

𝐷𝑢𝑊 (𝑝) := (𝐷𝑢𝑤1(𝑝)︸    ︷︷    ︸
⟨∇𝑤1 (𝑝 ),𝑢 ⟩

, . . . , 𝐷𝑢𝑤𝑛 (𝑝)) ∈ R𝑛,

which can alternatively be written as the limit of the quotient

𝐷𝑢𝑊 (𝑝) := lim
𝑡↓0

𝑊 (𝑝 + 𝑡𝑢) −𝑊 (𝑝)
𝑡

∈ R𝑛 . (4.9)

For the general case, can we just use (4.9)?

The first immediate problem one runs into is that for a general surface 𝑆 , 𝑝 ∈ 𝑆 and 𝑢 ∈ 𝑇𝑝𝑆 , it is
not true that 𝑝 + 𝑡𝑢 ∈ 𝑆 , and so the equation is not even well defined. Instead, we could replace
this with a path in 𝑆 . So, given 𝛾 : (−𝜖, 𝜖) → 𝑆 with 𝛾 (0) = 𝑝 and 𝛾 ′(0) = 𝑢, (4.9) becomes

(𝑊 ◦ 𝛾)′(0) = lim
𝑡↓0

𝑊 (𝛾 (𝑡)) −𝑊 (𝛾 (0))
𝑡

∈ R3.

However, this definition is still not sufficient for detecting intrinsic variations.
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Example 4.32. Consider the cylinder with the local coordinates

𝑋 (𝑢1, 𝑢2) = (cos𝑢1, sin𝑢1, 𝑢2), ∀(𝑢1, 𝑢2) ∈ (−𝜋, 𝜋) × R.

Defining𝑊 = 𝑋1 and 𝛾 (𝑡) = (cos 𝑡, sin 𝑡, 0), we see that

(𝑊 ◦ 𝛾)′(0) = (−1, 0, 0) .

However, recall that the cylinder is locally isomorphic to the plane, via the map (cos𝑢1, sin𝑢1, 𝑢2) ↦→
(𝑢1, 𝑢2) on 𝑋 (𝑈 ). Under this local isometry, the vector field𝑊 is mapped to 𝜑∗(𝑊 ) = 𝑑𝜑 ·𝑊 =

(𝜑 ◦ 𝑋 )1 = (1, 0), and the curve is mapped to 𝜑 ◦ 𝛾 (𝑡) = (𝑡, 0). Therefore, we see that

(𝜑∗(𝑊 ) ◦ (𝜑 ◦ 𝛾))′(0) = 0.

If this quantity was detecting intrinsic variations in our surface, it should be invariant under local
isometry and therefore should not give these two different answers.

The reason for the discrepancy is that in the cylindrical case,𝑊 ◦ 𝛾 (𝑡) needs to accelerate to
remain inside 𝑇𝛾 (𝑡 )𝑆 . To account for this, we project the derivative onto the tangent plane.

Definition 4.33. Given a regular surface 𝑆 and a smooth vector field𝑊 ∈ Γ(𝑇𝑆), the covariant
derivative of𝑊 at 𝑝 ∈ 𝑆 in the direction of 𝑢 ∈ 𝑇𝑝𝑆 is defined to be

𝐷𝑢𝑊 (𝑝) := [(𝑊 ◦ 𝛾)′(0)]𝑇 ∈ 𝑇𝑝𝑆,

where 𝛾 : (−𝜖, 𝜖) → 𝑆 is smooth with 𝛾 (0) = 𝑝 and 𝛾 ′(0) = 𝑢.

Remark. Since (𝑇𝑝𝑆)⊥ is spanned by the normal vector 𝑁 , we could alternatively write the
covariant derivative as

𝐷𝑢𝑊 (𝑝) = (𝑊 ◦ 𝛾)′(0) −
〈
(𝑊 ◦ 𝛾)′(0), 𝑁𝑝

〉
𝑁𝑝 .

Given local coordinates 𝑋 : 𝑈 → 𝑆 , suppose𝑊 = 𝑤𝑖 · 𝑋𝑖 and 𝛾 (𝑡) = 𝑋 (𝑢1(𝑡), 𝑢2(𝑡)). Then

𝑊 ◦ 𝛾 (𝑡) = 𝑤𝑖 (𝑢1(𝑡), 𝑢2(𝑡))︸             ︷︷             ︸
𝜔𝑖 (𝑡 )

𝑋𝑖 ,

and hence
(𝑊 ◦ 𝛾)′(0) = 𝜔 ′

𝑖 · 𝑋𝑖 + 𝜔𝑖 · 𝑋𝑖 𝑗𝑢′𝑗 .

Recall,
𝑋𝑇𝑖 𝑗 = (Γ𝑘𝑖 𝑗 · 𝑋𝑘 + ℎ𝑖 𝑗𝑁 )𝑇 = Γ𝑘𝑖 𝑗𝑋𝑘 ,

and therefore
𝐷𝑢𝑊 (𝑝) = 𝜔 ′

𝑖 · 𝑋𝑖 + 𝜔𝑖 𝑢′𝑗 Γ𝑘𝑖 𝑗 · 𝑋𝑘 . (4.10)

In general, we only need our vector field 𝑊 to be defined along a curve in order to be
differentiated in the direction of the tangent of the curve.
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Definition 4.34. Given a smooth curve 𝛾 : 𝐼 → 𝑆 , we define a smooth vector field along 𝛾 to be
an association 𝑡 ∈ 𝐼 to𝑊 (𝑡) ∈ 𝑇𝛾 (𝑡 )𝑆 such that in any local coordinates chart 𝑋 : 𝑈 → 𝑆 ,

𝑊 (𝑡) = 𝑤𝑖 (𝑡) · 𝑋𝑖 , ∀𝑡 ∈ 𝐼 ∩ 𝛾−1(𝑋 (𝑈 )),

with𝑤𝑖 smooth. We denote this by𝑊 ∈ 𝐶∞(𝑇𝛾 (𝐼 )). We define the covariant derivative of such a
𝑊 along 𝛾 in the exact same way as before, but now we denote it by 𝐷𝑊

𝑑𝑡
.

Example 4.35. Given 𝛾 : 𝐼 → 𝑆 smooth, we could take𝑊 (𝑡) = 𝛾 ′(𝑡) ∈ 𝑇𝛾 (𝑡 )𝑆 . This is clearly a
smooth vector field along 𝛾 with

𝐷𝑊

𝑑𝑡
(𝑡) = [𝛾 ′′(𝑡)]𝑇 , ∀𝑡 ∈ 𝐼 ,

the tangential acceleration of 𝛾 .

Vector fields whose covariant derivative vanishes along a curve are particularly important.

Definition 4.36. A smooth vector field𝑊 along a curve 𝛾 is called parallel if 𝐷𝑊
𝑑𝑡

≡ 0.

Example 4.37.

• For any curve in the plane, a vector field along the curve is parallel iff the vector field is
constant.

• For a unit curve moving around a cylinder perpendicular to its translational symmetry, the
tangent vector field of this curve parameterised by unit speed is parallel.

• For a great circle on a sphere, again, the tangent vector field of this curve parameterised
by unit speed is parallel.

Lemma 4.38. If 𝑉 (𝑡),𝑊 (𝑡) are smooth parallel vector fields along a curve 𝛾 : 𝐼 → 𝑆 , then

⟨𝑉 (𝑡),𝑊 (𝑡)⟩ = ⟨𝑉 (𝑠),𝑊 (𝑠)⟩ , ∀𝑠, 𝑡 ∈ 𝐼 .

In particular the length of a parallel vector field along a curve is constant.

Proof. Since 𝑉 ′(𝑡) − 𝐷𝑉
𝑑𝑡

(𝑡) is perpendicular to the tangent space, we see that

𝑑

𝑑𝑡
⟨𝑉 (𝑡),𝑊 (𝑡)⟩ = ⟨𝑉 ′(𝑡),𝑊 (𝑡)⟩ + ⟨𝑉 (𝑡),𝑊 ′(𝑡)⟩

=

〈
𝐷𝑉

𝑑𝑡
(𝑡),𝑊 (𝑡)

〉
+

〈
𝑉 (𝑡), 𝐷𝑊

𝑑𝑡
(𝑡)

〉
= 0,

and so ⟨𝑉 (𝑡),𝑊 (𝑡)⟩ is constant in 𝑡 . □

For a smooth vector field 𝑊 along 𝛾 , recall that in local coordinates (4.10) the covariant
derivative is given by

𝑑𝑊

𝑑𝑡
= 𝜔 ′

𝑖 · 𝑋𝑖 + 𝜔𝑖 𝑢′𝑗 Γ𝑘𝑖 𝑗 · 𝑋𝑘 .
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By equating coefficients, we see that𝑊 is parallel along 𝛾 iff

𝜔 ′
𝑘
+ 𝜔𝑖 𝑢′𝑗 Γ𝑘𝑖 𝑗 = 0, for 𝑘 = 1, 2.

This is just a system of first order linear ODEs, and hence by the existence and uniqueness
theorem from §1, we guarantee the existence and uniqueness of such a vector field given suitable
initial data.

Lemma 4.39. For a regular smooth curve 𝛾 : 𝐼 → 𝑆 , 𝑡0 ∈ 𝐼 and𝑊0 ∈ 𝑇𝛾 (𝑡0 )𝑆 , there exists a
unique parallel𝑊 ∈ 𝐶∞(𝑇𝛾 (𝐼 )) such that𝑊 (𝑡0) =𝑊0.

4.6 Geodesics

Along any smooth curve 𝛾 : 𝐼 → 𝑆 , there is an obvious choice of smooth vector field along 𝛾 ,
namely its velocity 𝛾 ′ ∈ 𝐶∞(𝑇𝛾 (𝐼 )). If the velocity is parallel (i.e. the curve has no intrinsic
acceleration) we call 𝛾 a geodesic.

Definition 4.40. A non-constant smooth curve 𝛾 : 𝐼 → 𝑆 is a geodesic if

𝐷𝛾 ′

𝑑𝑡
= [𝛾 ′′(𝑡)]𝑇 = 0, ∀𝑡 ∈ 𝐼 .

Remark.

• We know immediately from the Lemma 4.38 that geodesics have constant speed, and are
regular. In particular, we may as well linearly scale the speed so that our geodesics are
always parameterised by arc-length.

• If our surface is oriented, then for any arc-length curve 𝛾 : 𝐼 → 𝑆 we have that equation
(4.2) holds

𝛾 ′′(𝑡) = 𝜅𝐺 (𝑡) ·𝐺𝛾 (𝑡 ) + 𝜅𝑁 (𝑡) · 𝑁𝛾 (𝑡 ) , ∀𝑡 ∈ 𝐼 .

From which it follows that the covariant derivative of 𝛾 ′ along 𝛾 is

𝐷𝛾 ′

𝑑𝑡
= [𝛾 ′′]𝑇 = 𝜅𝐺 ·𝐺.

Therefore, 𝛾 is a geodesic if and only if 𝜅𝐺 ≡ 0, and hence 𝜅 = 𝜅𝑁 · 𝑁 .

Recall that for a vector field𝑊 along 𝛾 , in local coordinates 𝑋 : 𝑈 → 𝑆 ,𝑊 being parallel is
equivalent to the system of equations

𝑤 ′
𝑘
+𝑤𝑖 𝑢′𝑗 Γ𝑘𝑖 𝑗 = 0, 𝑘 ∈ {1, 2},

where 𝛾 (𝑡) = 𝑋 (𝑢1(𝑡), 𝑢2(𝑡)) and𝑊 = 𝑤𝑖 · 𝑋𝑖 . In the case𝑊 = 𝛾 ′(𝑡), we find that𝑤𝑖 = 𝑢′𝑖 and so
our local geodesic equations are

𝑢′′
𝑘
+ Γ𝑘𝑖 𝑗 𝑢

′
𝑖 𝑢

′
𝑗 = 0, 𝑘 ∈ {1, 2}. (4.11)
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Corollary. If 𝜑 : 𝑆 → 𝑆 is an isometry, then 𝛾 : 𝐼 → 𝑆 is a geodesic iff 𝛾 := 𝜑 ◦ 𝛾 : 𝐼 → 𝑆 is a
geodesic.

Proof. To show that a curve is a geodesic, it suffices to check that (4.11) holds locally. Given
local coordinates 𝑋 : 𝑈 → 𝑆 , by the same reasoning as in the proof of Lemma 4.29 we can show
that �̃� := 𝜑 ◦ 𝑋 : 𝑈 → 𝑆 are local coordinates on 𝑆 with 𝑔𝑖 𝑗 = 𝑔𝑖 𝑗 everywhere in𝑈 :

𝑔𝑖 𝑗𝑤𝑖𝑤 𝑗 = 𝑔𝑝 (𝑤𝑖𝑋𝑖) = 𝑔𝜑 (𝑝 ) (𝑤𝑖𝑑𝜑𝑝 · 𝑋𝑖)) = 𝑔𝜑 (𝑝 ) (𝑤𝑖�̃�𝑖) = 𝑔𝑖 𝑗𝑤𝑖𝑤 𝑗 .

Under these local coordinates, if 𝛾 (𝑡) = 𝑋 (𝑢1(𝑡), 𝑢2(𝑡)), then 𝛾 = �̃� (𝑢1(𝑡), 𝑢2(𝑡)) also. Since the
Christoffel symbols Γ𝑘𝑖 𝑗 depend only on the first fundamental form, it follows that 𝛾 solves (4.11)
in 𝑋 (𝑈 ) iff 𝛾 solves (4.11) in �̃� (𝑈 ). □

To understand the geometric significance of geodesics, its necessary to consider them from a
variational perspective.

Given a connected regular surface 𝑆 , and a pair of points 𝑝, 𝑞 ∈ 𝑆 , consider the family of
smooth curves in 𝑆 joining 𝑝 to 𝑞, under the following renormalisation:

𝐶𝑝𝑞 := {𝛾 : 𝐼 → 𝑆 | 𝛾 is a smooth regular curve, with [0, 1] ⊆ 𝐼 , 𝛾 (0) = 𝑝,𝛾 (1) = 𝑞}.

It is a fact (used in Homework 2) that 𝐶𝑝𝑞 ≠ ∅. To each curve we have the associated length from
𝑝 to 𝑞

𝐿(𝛾 | [0,1]) =
∫ 1

0
∥𝛾 ′(𝑠)∥ 𝑑𝑠, ∀𝛾 ∈ 𝐶𝑝𝑞 .

Goal: Minimise the length functional.

𝑑 (𝑝, 𝑞) := inf
𝛾 ∈𝐶𝑝𝑞

𝐿(𝛾 | [0,1]).

Let 𝛾 : 𝐼 × (−𝛿, 𝛿) → 𝑆 be a smooth 1-parameter family of regular curves inside of 𝑆 such that
𝛾 (·, 𝑡) ∈ 𝐶𝑝𝑞 for each 𝑡 ∈ (−𝛿, 𝛿), with 𝛾 = 𝛾 (·, 0). Let

ℒ(𝑡) := 𝐿(𝛾 (·, 𝑡) | [0,1]), ∀𝑡 ∈ (−𝛿, 𝛿) .

Then 𝛾 being a local minimiser of the length functional implies that along this (or any such)
variation we have ℒ

′(0) = 0. Note that

ℒ
′(0) = 𝑑

𝑑𝑡

∫ 1

0
⟨𝛾𝑠 (𝑠, 𝑡), 𝛾𝑠 (𝑠, 𝑡)⟩

1
2 𝑑𝑠 |𝑡=0

=

∫ 1

0
⟨𝛾𝑠 (𝑠), 𝛾𝑠 (𝑠)⟩−

1
2 ⟨𝛾𝑠𝑡 (𝑠, 0), 𝛾𝑠 (𝑠)⟩ 𝑑𝑠

=

∫ 1

0

〈
𝜕𝑠 · 𝛾𝑡 (𝑠, 0),

𝛾𝑠 (𝑠)
|𝛾𝑠 (𝑠) |

〉
𝑑𝑠

= −
∫ 1

0

〈
𝛾𝑡 (𝑠, 0), 𝜕𝑠 ·

(
𝛾𝑠 (𝑠)
|𝛾𝑠 (𝑠) |

)〉
𝑑𝑠.

65



4 Curvature

Note that𝑊 (𝑠) := 𝛾𝑡 (𝑠, 0) is a smooth vector field along 𝛾 , with𝑊 (0) =𝑊 (1) = 0, and so

ℒ
′(0) = −

∫ 1

0

〈
𝑊 (𝑠),

[
𝜕𝑠 ·

(
𝛾𝑠 (𝑠)
|𝛾𝑠 (𝑠) |

)]𝑇 〉
𝑑𝑠. (4.12)

Lemma 4.41. 𝛾 ∈ 𝐶𝑝𝑞 is a critical point of the length functional if and only if the vector field
𝑉 (𝑠) := 𝛾𝑠 (𝑠 )

|𝛾𝑠 (𝑠 ) | for 𝑠 ∈ (0, 1) is parallel along 𝛾 .

Sketch of Proof. If 𝑉 (𝑠) is parallel then (4.12) implies that ℒ′(0) = 0 along any variation, and
so 𝛾 is a critical point of the length functional. Conversely, consider the smooth vector field along
𝛾 given by the covariant derivative

𝐷𝑉

𝑑𝑠
(𝑠) :=

[
𝜕𝑠 ·

𝛾𝑠 (𝑠)
|𝛾𝑠 (𝑠) |

]𝑇
, ∀𝑠 ∈ 𝐼 .

Suppose for some 𝑠0 ∈ (0, 1) that 𝐷𝑉
𝑑𝑠

(𝑠0) ≠ 0. Choose a smooth cut-off function 𝜑 ∈ 𝐶∞
𝑐 ((0, 1))

such that 𝜑 (𝑠0) > 0 and 𝜑 ≥ 0. For each 𝑠 ∈ 𝐼 , define 𝜂𝑠 : (−𝛿𝑠 , 𝛿𝑠) → 𝑆 such that

𝜂𝑠 (0) = 𝛾 (𝑠), 𝜂′𝑠 (0) = 𝜑 (𝑠) ·
𝐷𝑉

𝑑𝑠
(𝑠) ∈ 𝑇𝛾 (𝑠 )𝑆.

When 𝜑 (𝑠) = 0, then we can extend the function 𝜂𝑠 : R → 𝑆 , as 𝜂𝑠 ≡ 𝛾 (𝑠). In particular, since the
support of 𝜑 is compact, there exists 𝛿 > 0 such that we can define the map 𝛾 : 𝐼 × (−𝛿, 𝛿) → 𝑆

with
𝛾 (𝑠, 𝑡) := 𝜂𝑠 (𝑡), ∀(𝑠, 𝑡) ∈ 𝐼 × (−𝛿, 𝛿) .

Note that 𝛾 (·, 0) = 𝛾 (·). It can also be shown that 𝛾 (·, 𝑡) ∈ 𝐶𝑝𝑞 for each 𝑡 ∈ (−𝛿, 𝛿). Finally, along
this variation we find that

ℒ
′(0) = −

∫ 1

0
𝜑 (𝑠) · ∥𝐷𝑉

𝑑𝑠
(𝑠)∥2𝑑𝑠 < 0,

and so 𝛾 is not a critical point of the length functional. □

In the case that 𝛾 is parameterised by arc-length, then 𝛾 is a critical point of the length functional
if and only if 𝛾 is a geodesic. However, the length functional does not pick up any information on
how the curve 𝛾 is parameterised, and so in general 𝛾 is not a geodesic and we can only conclude
that its trace 𝛾 (𝐼 ) will have a parameterisation which is a geodesic.

Alternatively, to remove the reparameterisation invariance of our length functional, we could
instead consider the energy functional

𝐸 (𝛾 | [0,1]) :=
1
2

∫ 1

0
∥𝛾 ′(𝑠)∥2 𝑑𝑠, ∀𝛾 ∈ 𝐶𝑝𝑞 .

Note that by the Hölder inequality

𝐿(𝛾 | [0,1])2 =
(∫ 1

0
∥𝛾 ′(𝑠)∥ 𝑑𝑠

)2
≤

(∫ 1

0
∥𝛾 ′(𝑠)∥2 𝑑𝑠

) (∫ 1

0
1 𝑑𝑠

)
= 2 · 𝐸 (𝛾 | [0,1]),
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with equality if and only if the curve is parameterised by constant speed. Therefore, minimisers
of the energy functional should correspond to minimisers of the length functional with constant
speed, which are precisely geodesics!

Lemma 4.42. 𝛾 ∈ 𝐶𝑝𝑞 is a critical point of the energy functional if and only if 𝛾 is a geodesic.

Sketch of Proof. For a variation 𝛾 as before, if

ℰ(𝑡) := 𝐸 (𝛾 (·, 𝑡) | [0,1]), ∀𝑡 ∈ (−𝛿, 𝛿),

then we calculate

ℰ
′(0) = 𝑑

𝑑𝑡

∫ 1

0

1
2
⟨𝛾𝑠 (𝑠, 𝑡), 𝛾𝑠 (𝑠, 𝑡)⟩ 𝑑𝑠 |𝑡=0

=

∫ 1

0
⟨𝛾𝑠𝑡 (𝑠, 0), 𝛾𝑠 (𝑠)⟩ 𝑑𝑠

=

∫ 1

0
⟨𝜕𝑠 · 𝛾𝑡 (𝑠, 0), 𝛾𝑠 (𝑠)⟩ 𝑑𝑠

= −
∫ 1

0
⟨𝛾𝑡 (𝑠, 0), 𝛾𝑠𝑠 (𝑠)⟩ 𝑑𝑠,

and so

ℰ
′(0) = −

∫ 1

0

〈
𝑊 (𝑠), [𝛾𝑠𝑠 (𝑠)]𝑇

〉
𝑑𝑠. (4.13)

The result follows by the exact same argument as in Lemma 4.41. □

Remark. In general, geodesics are not length minimising paths. Consider a large section of
a great circle on the sphere S2. Although this curve is a geodesic, there exists a shorted path
(also a geodesic) by traversing the great circle in the opposite direction. However, by looking
at the second variation of length/energy, one can show that that geodesics are locally length
minimising.
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5 Abstract Manifolds

The content of this section is non-examinable.

So far in the course, we have dealt with regular surfaces which live inside an ambient space R3. In
general however, we can utilise the tools we have developed in the course to do intrinsic geometry
on a surface without the need for an embedding of the surface within a higher dimensional
ambient space.

We begin by considering a general topological space. Recall, this is a pair (𝑀,𝜏) where 𝑀 is a
set and 𝜏 ⊆ P(𝑀) satisfying the following properties

• ∅, 𝑀 ∈ 𝜏 ;

• 𝑈1, . . . ,𝑈𝑛 ∈ 𝜏 =⇒ ⋂𝑛
𝑗=1𝑈 𝑗 ∈ 𝜏 ;

• {𝑈𝑖}𝑖∈𝐼 ⊆ 𝜏 =⇒ ⋃
𝑖∈𝐼 𝑈𝑖 ∈ 𝜏 .

We will denote this in general just by 𝑀 , with those elements of 𝜏 known as open sets in 𝑀 . For
simplicity, we will always assume 𝑀 is a connected topological space. In order to use 𝑀 as the
foundation of an abstract smooth surface, we need to add some technical assumptions to 𝑀 .

Definition 5.1. A topological space 𝑀 is called:

Hausdorff if open sets separate point.

– For any 𝑝, 𝑞 ∈ 𝑀 with 𝑝 ≠ 𝑞, there exists open sets𝑈 ,𝑉 ⊆ 𝑀 with 𝑝 ∈ 𝑈 , 𝑞 ∈ 𝑉 and
𝑈 ∩𝑉 = ∅.

Paracompact if every open cover has a locally finite open refinement.

– For any open cover 𝑀 ⊆ ⋃
𝑖∈𝐼 𝑈𝑖 , there exists some new open cover 𝑀 ⊆ ⋃

𝑗∈ 𝐽 𝑉𝑗 ,
such that for any 𝑗 ∈ 𝐽 , there exists 𝑖 ∈ 𝐼 with 𝑉𝑗 ⊆ 𝑈𝑖 , with the property that for any
𝑝 ∈ 𝑀 , there is some open set𝑂 ⊆ 𝑀 with 𝑝 ∈ 𝑂 such that the set { 𝑗 ∈ 𝐽 : 𝑂∩𝑉𝑗 ≠ ∅}
is finite.

2nd countable if 𝑀 has a countable base.

– There exists some countable collection of open subsets O in 𝑀 such that any open set
in 𝑀 can be written as the union of elements of O.

Just like for a regular surface in R3, we want local regions of our space𝑀 to be homeomorphic to
open subsets of the plane (or more generally 𝑛-dimensional Euclidean space) via local coordinate
charts.
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5 Abstract Manifolds

Definition 5.2. A local coordinate chart on 𝑀 is a homeomorphism 𝑋 : 𝑈 → 𝑉 ⊆ 𝑀 , where
𝑉 ⊆ 𝑀 is an open subset of 𝑀 and𝑈 ⊆ R𝑛 is an open subset of Euclidean space. An atlas on 𝑀
is a collection of coordinates charts on 𝑀 , which we denote by {𝑋𝑖 : 𝑈𝑖 → 𝑉𝑖 ⊆ 𝑀}𝑖∈𝐼 , such that
the coordinate charts cover all of 𝑀 , i.e.

𝑀 ⊆
⋃
𝑖∈𝐼
𝑉𝑖 .

Fact: If𝑈 ⊆ R𝑛 and 𝑉 ⊆ R𝑚 are open subsets which are homeomorphic to each other, then
𝑛 =𝑚.

As a consequence, given an atlas {𝑋𝑖 : 𝑈𝑖 → 𝑉𝑖 ⊆ 𝑀}𝑖∈𝐼 on 𝑀 , every𝑈𝑖 is an open subset of
R𝑛 for some fixed value of 𝑛. We note that here we have used that 𝑀 is connected.

Definition 5.3. A Hausdorff, paracompact, 2nd countable, connected topological space 𝑀
equipped with an atlas is called an topological manifold. We say that 𝑀 is n-dimensional if its
atlas consists of coordinate charts defined on open subsets of R𝑛.

We have a topological notion of a surface (and higher dimensional analogues), but how do
we now define a smooth structure on 𝑀? Recall, for a regular surface 𝑆 ⊆ R3, the change of
coordinate functions between any pair of coordinate charts was always a smooth diffeomorphism
between open subsets of R2. We use this conclusion in the regular surface case as a definition in
the abstract setting.

Definition 5.4. Given an 𝑛-dimensional topological manifold 𝑀 , we say that 𝑀 is a smooth
manifold, if it admits an atlas {𝑋𝑖 : 𝑈𝑖 → 𝑉𝑖 ⊆ 𝑀}𝑖∈𝐼 , such that every transition function

𝑋 −1
𝑖 ◦ 𝑋 𝑗 : 𝑋 −1

𝑗 (𝑉𝑖 𝑗 ) → 𝑋 −1
𝑖 (𝑉𝑖 𝑗 ),

is a smooth diffeomorphism between open subsets of R𝑛, where 𝑉𝑖 𝑗 := 𝑉𝑖 ∩𝑉𝑗 ⊆ 𝑀 .

From the definition of a smooth manifold, it now makes sense to talk of a smooth function
between smooth manifolds, as we did in the case of smooth functions between regular surfaces.

Definition 5.5. Given a pair of smooth manifolds 𝑀, �̃� , we call a function 𝑓 : 𝑀 → �̃� smooth if
for any pair of coordinate charts 𝑋 : 𝑈 → 𝑀 and �̃� : �̃� → �̃� , the composition

�̃� −1 ◦ 𝑓 ◦ 𝑋 : 𝑈 → �̃� ,

is smooth as a function between open subsets of Euclidean space.

In particular, it makes sense to consider smooth paths 𝛾 : 𝐼 → 𝑀 . Fix 𝑝 ∈ 𝑀 and consider the
collection of all smooth curves in 𝑀 passing through 𝑝

Γ𝑝 := {𝛾 : 𝐼 → 𝑀 : 𝛾 is smooth with 0 ∈ 𝐼 , 𝛾 (0) = 𝑝}.

Under some local coordinates 𝑋 : 𝑈 → 𝑀 about 𝑝, we want then to consider the tangent space to
𝑀 at 𝑝 as we did in the case of regular surfaces to be the tangent vectors 𝛾 ′(0) for curves 𝛾 ∈ Γ𝑝 .
However, we need to be slightly careful as naively consider this set as the tangent space would
incur multiple copies of each tangent vector, as there are multiple curves with the same derivative
at zero. To fix this, we define the equivalence relation on Γ𝑝 by setting 𝛾 ∼ 𝜂 if 𝛾 ′(0) = 𝜂′(0) for
any 𝛾, 𝜂 ∈ Γ𝑝 .
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Definition 5.6. For a smooth 𝑛-dimensional manifold 𝑀 with 𝑝 ∈ 𝑀 , the tangent space to 𝑀 at
𝑝 is 𝑇𝑝𝑀 := Γ𝑝/∼. That is, one can think of a tangent vector 𝑣 ∈ 𝑇𝑝𝑀 as an equivalence class
𝑣 = [𝛾 ′(0)], for some 𝛾 ∈ Γ𝑝 .

One can show that for any 𝑝 ∈ 𝑀 , 𝑇𝑝𝑀 is a well-defined 𝑛-dimensional vector space.

Exercise. Try to find a suitable definition for what it means for a smooth 𝑛-dimensional manifold
to be orientable.

So far, we have only considered ourselves with (differential) topology. In order to make sense
of the geometric notions from the course, we need to introduce a generalisation of the first
fundamental form. In particular, we make a choice of quadratic form on each tangent space in
a smooth way. This is exactly a generalised notion of the first fundamental form for regular
surfaces, but in this case without the need for an ambient space which induces it.

Definition 5.7. Given a smooth 𝑛-dimensional manifold, a Riemannian metric on 𝑀 assigns to
each 𝑝 ∈ 𝑀 a non-degenerate quadratic form

𝑔𝑝 : 𝑇𝑝𝑀 → [0,∞),

in a smooth way.

Remark. Note that for each 𝑝 ∈ 𝑀 , given local coordinates 𝑋 : 𝑈 → 𝑀 about 𝑝, we can
view the Riemannian metric 𝑔 locally as a symmetric 𝑛 × 𝑛 matrix [𝑔]𝑋 = (𝑔𝑖 𝑗 ), where 𝑔 being
smooth means precisely that the components 𝑔𝑖 𝑗 : 𝑋 (𝑈 ) → R are smooth functions for every
𝑖, 𝑗 ∈ {1, . . . , 𝑛}.

Such a pair (𝑀,𝑔) is known as a Riemannian manifold. Note that we can make sense of all of
the intrinsic quantities we have consider so far in the course for these abstract spaces.

Question: How do these abstract spaces relate to the regular surfaces we studied in the course?

We note that every regular surface in R3 equipped with its first fundamental form is a 2-
dimensional Riemannian manifold. In fact, every regular surface in R𝑁 equipped with its first
fundamental form is a smooth 2-dimensional Riemannian manifold. That is, these abstractly
defined spaces include within them all of the regular surfaces studied thus far. One may wonder
however if these abstract spaces include more examples than those we are interested in. The
following remarkable theorem originally due to John Nash tells us that this is not that case, and
that our abstractly defined surfaces coincide precisely with those embedded within an ambient
Euclidean space.

Theorem 5.8 (Nash’s Embedding Theorem). Every smooth 2-dimensional Riemannian surface is
isometric to a smooth regular surface 𝑆 ⊆ R𝑁 for 𝑁 ≤ 51.
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6 Global Geometry

We finish the course by looking at a powerful theorem in geometry relating the total curvature of
a surface, which is a global geometric quantity, with the Euler characteristic of the surface, which
is a topological invariant of the surface. One way to paraphrase this is that although locally we
have near unlimited freedom of the geometric structure we define on a surface, globally we are
highly constrained.

6.1 Local Gauss-Bonnet

We begin with a local observation as motivation for the theorem. Suppose 𝑆 is an oriented regular
surface and Ω ⋐ 𝑆 is a compact region contained within a single coordinate chart 𝑋 : 𝑈 → 𝑆 .
Moreover, we may assume without loss of generality that 𝑋 are isothermal coordinates, so that

[𝑔]𝑋 =

(
𝑒2𝑓 0
0 𝑒2𝑓

)
,

for some smooth function 𝑓 : 𝑈 → R. We assume that there exists a continuous function
𝛼 : [0, 𝐿] → 𝑆 such that

𝜕Ω = 𝛼 ( [0, 𝐿]),

satisfying the following assumptions

• 𝛼 is closed: 𝛼 (0) = 𝛼 (1),

• 𝛼 is simple: 𝛼 (𝑡) = 𝛼 (𝑠) =⇒ 𝑡 = 𝑠 or 𝑠, 𝑡 ∈ {0, 𝐿},

• 𝛼 is piecewise smooth and regular: there exists 𝑡0 := 0 < 𝑡1 < · · · < 𝑡𝑘 < 𝐿 =: 𝑡𝑘+1 such
that 𝛼 | (𝑡𝑖 ,𝑡𝑖+1 ) is a smooth regular curve parameterised by arc-length for 𝑖 ∈ {0, . . . , 𝑘}.

• 𝛼 is positively oriented: at regular points 𝑡 ∈ (0, 𝐿) \ {𝑡1, . . . , 𝑡𝑘 }, the inward pointing
normal of the curve is given by

𝐺 = 𝑁 × 𝛼 ′.

Exercise. With respect to the isothermal coordinates defined above, the Gaussian curvature is
given by the formula

𝐾 = −𝑒−2𝑓 Δ𝑓 .
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6 Global Geometry

Hence the total curvature over the compact region Ω satisfies∫
Ω
𝐾𝑑𝐴 =

∫
𝑋 −1 (Ω)

(−𝑒−2𝑓 Δ𝑓 )𝑒2𝑓 𝑑𝑢𝑑𝑣

=

∫
𝑋 −1 (Ω)

−Δ𝑓 𝑑𝑢𝑑𝑣

=

∫
𝑋 −1 (𝛼 )

⟨∇𝑓 ,𝐺⟩ 𝑑𝑠,

where the third equality follows by Green’s theorem. Within our coordinates, we find that

𝑒1 := 𝑒−𝑓𝑋𝑢, 𝑒2 := 𝑒−𝑓𝑋𝑣,

form an orthonormal basis of each tangent plane, with 𝑁 = 𝑒1 × 𝑒2. Where 𝛼 is smooth and
regular, there exists a smooth function 𝜃 such that

𝛼 ′ = cos𝜃 · 𝑒1 + sin𝜃 · 𝑒2,

and hence
𝐺 = 𝑁 × 𝛼 ′ = − sin𝜃 · 𝑒1 + cos𝜃 · 𝑒2.

It follows that the geodesic curvature is given by

𝜅𝐺 = ⟨𝛼 ′′,𝐺⟩
= 𝜃 ′ ⟨𝐺,𝐺⟩ +

〈
cos𝜃 · 𝑒′1 + sin𝜃 · 𝑒′2,− sin𝜃 · 𝑒1 + cos𝜃 · 𝑒2

〉
= 𝜃 ′ + cos2 𝜃

〈
𝑒′1, 𝑒2

〉
− sin2 𝜃

〈
𝑒′2, 𝑒1

〉
= 𝜃 ′ +

〈
𝑒′1, 𝑒2

〉
.

Note that 〈
𝑒′1, 𝑒2

〉
=

〈
(𝑒−𝑓𝑋𝑢)′, 𝑒−𝑓𝑋𝑣

〉
= 𝑒−2𝑓

〈
𝑋 ′
𝑢, 𝑋𝑣

〉
= 𝑒−2𝑓 ⟨𝑋𝑢𝑢𝑢′ + 𝑋𝑢𝑣𝑣 ′, 𝑋𝑣⟩ ,

with

⟨𝑋𝑢𝑣, 𝑋𝑣⟩ =
1
2
(⟨𝑋𝑣, 𝑋𝑣⟩)𝑢 =

1
2
(𝑒2𝑓 )𝑢 = 𝑓𝑢𝑒

2𝑓 ,

⟨𝑋𝑢𝑢, 𝑋𝑣⟩ = − ⟨𝑋𝑢, 𝑋𝑢𝑣⟩ = −1
2
(⟨𝑋𝑢, 𝑋𝑢⟩)𝑣 = −1

2
(𝑒2𝑓 )𝑣 = −𝑓𝑣𝑒2𝑓 ,

and thus 〈
𝑒′1, 𝑒2

〉
= 𝑣 ′ 𝑓𝑢 − 𝑢′ 𝑓𝑣 .

Substituting this back into our equation for the geodesic curvature, we find that

𝜅𝐺 = 𝜃 ′ + 𝑣 ′ 𝑓𝑢 − 𝑢′ 𝑓𝑣 .
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If 𝛼 (𝑡) = 𝑋 (𝑢 (𝑡), 𝑣 (𝑡)), then 𝐺 = (−𝑣 ′, 𝑢′) and hence

⟨∇𝑓 ,𝐺⟩ = (𝑓𝑢, 𝑓𝑣) · (−𝑣 ′, 𝑢′) = 𝑢′ 𝑓𝑣 − 𝑣 ′ 𝑓𝑢 = 𝜃 ′ − 𝜅𝐺 .

Substituting this back into our formula for the total Gaussian curvature we find that∫
Ω
𝐾 𝑑𝐴 +

∫
𝛼

𝜅𝐺 𝑑𝑠 =

𝑘∑︁
𝑖=0

∫ 𝑡𝑖+1

𝑡𝑖

𝜃 ′(𝑡) 𝑑𝑡

=

𝑘∑︁
𝑖=0

[𝜃 (𝑡+𝑖+1) − 𝜃 (𝑡−𝑖 )]

where 𝑓 (𝑡+0 ) := lim𝑡↑𝑡0 𝑓 (𝑡) and 𝑓 (𝑡−0 ) := lim𝑡↓𝑡0 𝑓 (𝑡) denote the one-sided limits. We now find a
more geometric interpretation of the quantity on the right hand side. Recall, cos𝜃 (𝑡) = ⟨𝛼 ′, 𝑒1⟩,
and so 𝜃 (𝑡) is measuring the angle between the tangent vector to the curve at 𝑡 and the direction
(1, 0). Reordering the terms, we have that

𝑘∑︁
𝑖=0

[𝜃 (𝑡+𝑖+1) − 𝜃 (𝑡−𝑖 )] = 𝜃 (𝐿+) +
𝑘−1∑︁
𝑖=0

𝜃 (𝑡+𝑖+1) − 𝜃 (0−) −
𝑘∑︁
𝑖=1

𝜃 (𝑡−𝑖 )

= [𝜃 (𝐿+) − 𝜃 (0−)] −
𝑘∑︁
𝑖=1

[𝜃 (𝑡−𝑖 ) − 𝜃 (𝑡+𝑖 )]

By drawing a suitable picture, we see that for any 𝑖 ∈ {1, . . . , 𝑘}, the exterior angle formed at
𝑡𝑖 , which we denote by 𝜑𝑖 , is precisely the difference 𝜃 (𝑡−𝑖 ) − 𝜃 (𝑡+𝑖 ). Moreover, at the point
𝛾 (0) = 𝛾 (𝐿), we see that

𝜃 (𝐿+) + 𝜑0 = 2𝜋 + 𝜃 (0−),

since the closed curve makes one complete turn. Therefore

𝑘∑︁
𝑖=0

[𝜃 (𝑡+𝑖+1) − 𝜃 (𝑡−𝑖 )] = 2𝜋 −
𝑘∑︁
𝑖=0

𝜑𝑖 .

Combining everything, we have a local version of the Gauss-Bonnet theorem.

Theorem 6.1 (Local Gauss-Bonnet). Let 𝑆 be an oriented surface with some oriented isothermal
coordinate chart 𝑋 : 𝑈 → 𝑆 . For any compact region Ω ⋐ 𝑋 (𝑈 ) which has a closed, simple,
piecewise smooth and regular boundary 𝛼 , we have the formula∫

Ω
𝐾 𝑑𝐴 +

∫
𝛼

𝜅𝐺 𝑑𝑠 +
𝑘∑︁
𝑖=0

𝜑𝑖 = 2𝜋, (6.1)

where 𝛼 is choice to be positively oriented and
∑𝑘
𝑖=0 𝜑𝑖 denotes the sum of the exterior angles. In

particular, if 𝛼 is smooth (𝛼 has no vertices), then equation (6.1) reduces to∫
Ω
𝐾 𝑑𝐴 +

∫
𝛼

𝜅𝐺 𝑑𝑠 = 2𝜋.
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Remark. In the proof of this theorem, we showed that∫
Ω
𝐾𝑑𝐴 =

∫
𝛼

〈
𝑒′1, 𝑒2

〉
𝑑𝑠. (6.2)

For any other positively oriented orthonormal frame {𝑓1, 𝑓2} on 𝑋 (𝑈 ), we have that

𝑓1 = cos 𝜌 · 𝑒1 + sin 𝜌 · 𝑒2, 𝑓2 = − sin 𝜌 · 𝑒1 + cos 𝜌 · 𝑒2,

for some smooth function 𝜌 : 𝑋 (𝑈 ) → R. In particular, we find that

𝑓 ′1 = 𝜌 ′ 𝑓2 + cos 𝜌 · 𝑒′1 + sin 𝜌 · 𝑒′2,

and hence ∫
𝛼

〈
𝑓 ′1 , 𝑓2

〉
𝑑𝑠 =

∫
𝛼

𝜌 ′ +
〈
𝑒′1, 𝑒2

〉
𝑑𝑠 =

∫
𝛼

〈
𝑒′1, 𝑒2

〉
𝑑𝑠.

Therefore (6.2) holds for any positively oriented orthonormal frame.

Example 6.2. For a polygon in the plane, the total curvature inside the polygon is zero, and the
geodesic curvature of each edge is zero. Therefore (6.1) becomes

𝑘∑︁
𝑖=0

𝜑𝑖 = 2𝜋.

That is, the sum of the exterior angles of any polygon is 2𝜋 .

Example 6.3. Consider any closed smooth regular curve 𝛼 in the plane. By the Jordan curve
theorem, it bounds a compact region Ω. Since the plane is flat, (6.1) becomes∫

𝛼

𝜅𝐺 = 2𝜋.

That is, for any closed smooth curve in the plane, its total geodesic curvature is 2𝜋 .

Example 6.4. Consider a regular geodesic triangle 𝛼 on the sphere whose interior is exactly 1/8
of the total sphere. Since 𝐾 ≡ 1 and the area of the enclosed region is 𝜋

2 , (6.1) becomes

𝜑0 + 𝜑1 + 𝜑2 =
3𝜋
2
.

Since we assumed the triangle is regular, 𝜑0 = 𝜑1 = 𝜑2 = 𝜋
2 , and hence we conclude that the

exterior (and hence interior) angles of this triangle are all 𝜋2 !

6.2 Euler Characteristic

We now find a global topological invariant for our surfaces. Consider a closed regular surface 𝑆 .
For us, closed just means that the surface 𝑆 is a compact set.
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Definition 6.5. A triangle in a regular surface 𝑆 is a compact subset of the form 𝑇 = 𝜓 (𝑇 ′),
where 𝑇 ′ is a triangle in R2, and𝜓 a diffeomorphism. The vertices, edges and face of 𝑇 are the
image of those of 𝑇 ′ under𝜓 . A triangulation of a regular surface 𝑆 is a collection of triangles
{𝑇𝑖}𝑖∈𝐼 in 𝑆 such that 𝑆 = ∪𝑖∈𝐼𝑇𝑖 , and if 𝑇𝑖 ∩𝑇𝑗 ≠ ∅, then the intersections consists or either a
single vertex, or a single edge and two vertices.

Theorem 6.6. Every closed regular surface 𝑆 admits a finite triangulation T = {𝑇1, . . . ,𝑇𝑁 }

Definition 6.7. Let 𝑆 be a closed regular surface and T a finite triangulation of 𝑆 . Let 𝑉 , 𝐸 and
𝐹 denote the number of vertices, edges and faces of T . We define the Euler characteristic to be

𝜒 (𝑆,T) := 𝑉 − 𝐸 + 𝐹 ∈ N.

Example 6.8. Consider the sphere S2. One could triangulate this by taking 8 copies of the
geodesic triangle as mentioned in Example 6.4. This triangulation T1 is a smooth version of an
octahedron. For this triangulation, we have 𝑉 = 6, 𝐸 = 12 and 𝐹 = 8, and so

𝜒 (S2,T1) = 6 − 12 + 8 = 2.

Example 6.9. Consider instead triangulating the sphere using just 4 geodesic triangles. This
triangulation T2 is a smooth version of a tetrahedron. For this triangulation, we have 𝑉 = 4,
𝐸 = 6 and 𝐹 = 4, and so

𝜒 (S2,T2) = 4 − 6 + 4 = 2.

As it turns out, the Euler characteristic is independent of the triangulation we take!

Theorem 6.10. For any closed regular surface 𝑆 , the Euler characteristic is independent of the
(finite) triangulation. As such, we simply denote it by 𝜒 (𝑆).

Sketch of Proof. Suppose T is a triangulation of 𝑆 . For any triangle 𝑇 ∈ T , we subdivide
the triangle into three new triangles to make a new triangulation T ′. Note that for this new
triangulation, we have

𝑉 ′ = 𝑉 + 1, 𝐸′ = 𝐸 + 3, 𝐹 ′ = 𝐹 + 2,

and therefore 𝜒 ′ = 𝜒 . Iterating this procedure a finite number of times, we deduce that the
Euler characteristic of any subdivision is the same as the original. Then, given any pair of finite
triangulations T1,T2, we find a common subdivision of the two, and hence conclude the Euler
characteristic is independent of the triangulation chosen. □

Corollary. If 𝑆 and 𝑆 are two diffeomorphic regular surfaces, then 𝜒 (𝑆) = 𝜒 (𝑆).

6.3 Gauss-Bonnet

We are now ready to state and prove the Gauss-Bonnet theorem.

Theorem 6.11 (Gauss-Bonnet). Let 𝑆 be a closed orientable surface. Then∫
𝑆

𝐾 𝑑𝐴 = 2𝜋 𝜒 (𝑆),

where 𝐾 denotes the Gaussian curvature of 𝑆 and 𝜒 (𝑆) denotes it Euler characteristic.
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Remark.

• This theorem is relating a topological invariant with a global geometric quantity. The
geometry is being constrained by the underlying topology!

• The theorem still holds without the orientability hypothesis, although we will not bother to
prove this here.

Proof of 6.11. By Theorem 6.6, 𝑆 admits a finite triangulation T . After possibly subdividing
the triangulation further, we may assume without loss of generality that every triangle 𝑇 ∈ T is
contained within a oriented isothermal coordinate chart. Applying (6.1) to each triangle 𝑇 and
summing we have∑︁

𝑇 ∈T

∫
𝑇

𝐾 𝑑𝐴 +
∑︁
𝑇 ∈T

∫
𝜕𝑇

𝜅𝐺 𝑑𝑠 +
∑︁
𝑇 ∈T

(𝜑0,𝑇 + 𝜑1,𝑇 + 𝜑2,𝑇 ) = 2𝜋𝐹 . (6.3)

By the definition of a triangulation, we see that the first term in (6.3) is just the total Gaussian
curvature of 𝑆 . By the orientation restriction on the boundaries of the triangles given in Theo-
rem 6.1, we see that every edge is traversed exactly twice and in opposite directions, and thus the
second term in (6.3) is zero. Therefore, it suffices to show that

2𝜋𝐹 −
∑︁
𝑇 ∈T

(𝜑0,𝑇 + 𝜑1,𝑇 + 𝜑2,𝑇 ) = 2𝜋 𝜒 (𝑆) .

We first note that the interior angle at each vertex 𝜄 𝑗,𝑇 satisfies

𝜄 𝑗,𝑇 + 𝜑 𝑗,𝑇 = 𝜋, ∀𝑗 ∈ {0, 1, 2}, ∀𝑇 ∈ T .

Then, since each vertex is a point in a regular surface, the sum of the interior angles around each
vertex is exactly 2𝜋 . Therefore ∑︁

𝑇 ∈T
(𝜄0,𝑇 + 𝜄1,𝑇 + 𝜄2,𝑇 ) = 2𝜋𝑉 ,

and hence

2𝜋𝐹 −
∑︁
𝑇 ∈T

(𝜑0,𝑇 + 𝜑1,𝑇 + 𝜑2,𝑇 ) = 2𝜋𝐹 − 3𝜋𝐹 +
∑︁
𝑇 ∈T

(𝜄0,𝑇 + 𝜄1,𝑇 + 𝜄2,𝑇 )

= 2𝜋𝐹 − 3𝜋𝐹 + 2𝜋𝑉 .

Finally, since every face has 3 edges, and each edge has exactly two faces, we have the relationship
3𝐹 = 2𝐸, which subbing into the above gives

2𝜋𝐹 −
∑︁
𝑇 ∈T

(𝜑0,𝑇 + 𝜑1,𝑇 + 𝜑2,𝑇 ) = 2𝜋𝐹 − 2𝜋𝐸 + 2𝜋𝑉 = 2𝜋 𝜒 (𝑆) . □
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Figure 6.1: A triangulation of 𝑇 with
𝑉 = 4, 𝐸 = 12, 𝐹 = 8.

Figure 6.2: A triangulation of 𝐶 with
𝑉 = 12, 𝐸 = 30, 𝐹 = 18.

6.4 Closed Orientable Surfaces

Now that we have the Gauss-Bonnet theorem, we may ask for some examples of closed orientable
surfaces for which the theorem holds. We begin with the simplest example; the sphere. One way
to change the underlying topology and keep the surface closed and orientable, is to add a handle
onto the sphere, which produces a torus. We could iterate this procedure and keep adding handles
onto our surface. To enumerate this process, we start by labeling the sphere as genus zero, and
after adding 𝑔 handles onto the sphere, we produce a closed orientable surface of genus 𝑔, which
we denote by Σ𝑔. For example, Σ1 is topologically a torus.

The following theorem tells us that this enumeration covers every possible closed orientable
regular surface!

Theorem 6.12. Every closed orientable regular surface 𝑆 is diffeomorphic to Σ𝑔, for some 𝑔 ∈ N0.

Example 6.13. We have already seen that 𝜒 (Σ0) = 𝜒 (S2) = 2. Consider a triangulation of a
torus Σ1 as indicated in Figure 6.1. In particular

𝜒 (Σ1) = 4 − 12 + 8 = 0

and so ∫
Σ1

𝐾𝑑𝐴 = 0,

for any closed orientable surface of genus one.

Theorem 6.14. If Σ𝑔 is a closed orientable surface of genus 𝑔, then

𝜒 (Σ𝑔) = 2 − 2𝑔.

Proof. Since 𝜒 (Σ0) = 2, the formula holds for 𝑔 = 0, and we proceed by induction. Consider a
triangulation of Σ𝑔 and the triangulation of a cylinder 𝐶 indicated in Figure 6.2. Removing two
of the triangules from the triangulation of Σ𝑔 and gluing in the cylinder 𝐶 as a handle we get a
triangulation of Σ𝑔+1. Note that this new triangulation has 𝐹 ′ = 𝐹 + 16, 𝑉 ′ = 𝑉 + 6 𝐸′ = 𝐸 + 24,
and hence by the induction hypothesis

𝜒 (Σ𝑔+1) = 𝑉 ′ − 𝐸′ + 𝐹 ′ = 𝑉 − 𝐸 + 𝐹 − 2 = 𝜒 (Σ𝑔) − 2 = 2 − 2(𝑔 + 1),

as required. □
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With this theorem in mind, we can rewrite the Gauss-Bonnet theorem as∫
Σ𝑔

𝐾 𝑑𝐴 = 4𝜋 (1 − 𝑔).

6.5 Poincaré-Hopf Index Theorem

This subsection is non-examinable!

Finally to conclude the course, we look at another theorem in global geometry similar in ways to
the Gauss-Bonnet theorem, which finds a correlation between the zeros of a smooth vector field
and the Euler characteristic of the underlying surface.

Definition 6.15. Let 𝑉 be a smooth vector field on a regular surface 𝑆 . We say that 𝑝 ∈ 𝑆 is a
zero of 𝑉 if 𝑉 (𝑝) = 0 ∈ 𝑇𝑝𝑆 . We say that 𝑉 has isolated zeros if the set of zeros

{𝑝 ∈ 𝑆 : 𝑉 (𝑝) = 0},

is an isolated set.

Given a smooth vector field 𝑉 ∈ 𝐶∞(𝑇𝑆) with isolated zeros on a closed oriented surface 𝑆 ,
it follows that 𝑉 has a finite set of zeros {𝑝1, . . . , 𝑝𝑘 }. Without loss of generality, we may find a
finite triangulation T = {𝑇𝑗 }𝑁𝑗=1 of 𝑆 such that each

𝑝 𝑗 ∈ 𝑇𝑗 , ∀𝑗 = 1, 2, . . . , 𝑘,

where here we mean that the zero lies in the face of the triangle 𝑇𝑗 , and moreover that each 𝑇𝑗 lies
within an oriented isothermal coordinate chart.

Definition 6.16. Given the above set-up, we define the index of the zero 𝑝 𝑗 to be

ℑ(𝑝 𝑗 ) :=
1
2𝜋

∫
𝜕𝑇𝑗

arccos
(
⟨𝑉 , 𝜉⟩
∥𝑉 ∥∥𝜉 ∥

) ′
𝑑𝑠,

where 𝜉 denotes a non-vanishing smooth vector field on the isothermal coordinate chart 𝑇𝑗 lays
within.

Exercise. ℑ(𝑝) is independent of the choice of suitable triangulation T , as well as the choice
non-vanishing vector field 𝜉 .

Example 6.17. In the case that 𝑉 is non-vanishing and there is no zero inside the triangle, then
choosing 𝜉 = 𝑉 , we have that the index of any point 𝑝 inside of 𝑇 is given by

ℑ(𝑝) := 1
2𝜋

∫
𝜕𝑇

arccos(1)′𝑑𝑠 = 0.

Therefore, the index is only important at zeros of 𝑉 !
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Example 6.18. The vector field 𝑉 (𝑥,𝑦) = (−𝑦, 𝑥) has a zero at the origin. Choosing 𝜉 = (0, 1)
and integrating around the unit circle in the anti-clockwise direction, we see that

ℑ((0, 0)) = 1
2𝜋

∫ 2𝜋

0
𝜃 ′(𝑠)𝑑𝑠 = 1.

Exercise. If moving in the anticlockwise direction is positively oriented (like in the previous
example), show that the vector field 𝑉 (𝑥,𝑦) = (𝑥2 − 𝑦2,−2𝑥𝑦) has ℑ((0, 0)) = −2.

Theorem 6.19 (Poincaré-Hopf Index Theorem). Let 𝑆 be a closed oriented regular surface and
𝑉 ∈ 𝐶∞(𝑇𝑆) with isolated zeros {𝑝1, . . . , 𝑝𝑘 }. Then

𝑘∑︁
𝑗=1

ℑ(𝑝 𝑗 ) = 𝜒 (𝑆).

Proof. By the Gauss-Bonnet theorem, we have

2𝜋 𝜒 (𝑆) =
∫
𝑆

𝐾 𝑑𝐴 =

𝑁∑︁
𝑗=1

∫
𝑇𝑗

𝐾 𝑑𝐴.

Note that
𝑘∑︁
𝑗=1

∫
𝑇𝑗

𝐾 𝑑𝐴 =

𝑘∑︁
𝑗=1

∫
𝜕𝑇𝑗

〈
𝑒′1, 𝑒2

〉
𝑑𝑠.

For 𝑗 = 𝑘 + 1, . . . , 𝑁 we can take 𝑓1 = 𝑉
∥𝑉 ∥ and 𝑓2 = 𝑓1 × 𝑁 , and since the triangulation covers

each edge twice we have

𝑁∑︁
𝑗=𝑘+1

∫
𝑇𝑗

𝐾 𝑑𝐴 =

𝑁∑︁
𝑗=𝑘+1

∫
𝜕𝑇𝑗

〈
𝑓 ′1 , 𝑓2

〉
𝑑𝑠 = −

𝑘∑︁
𝑗=1

∫
𝜕𝑇𝑗

〈
𝑓 ′1 , 𝑓2

〉
𝑑𝑠.

Thus

𝜒 (𝑆) =
𝑘∑︁
𝑗=1

1
2𝜋

∫
𝜕𝑇𝑗

〈
𝑒′1, 𝑒2

〉
−

〈
𝑓 ′1 , 𝑓2

〉
𝑑𝑠.

By the proof of the local Gauss-Bonnet theorem, we have that〈
𝑒′1, 𝑒2

〉
= 𝜃 ′ − 𝜅𝐺 ,

〈
𝑓 ′1 , 𝑓2

〉
= 𝜃 ′ − 𝜅𝐺 ,

where 𝜃 denotes the angle between the tangent vector to 𝜕𝑇𝑗 and 𝑒1, and 𝜃 the angle between the
tangent vector to 𝜕𝑇𝑗 and 𝑓1 = 𝑉

∥𝑉 ∥ . That is, 𝜃 − 𝜃 denotes the angle between 𝑉 and 𝑒1, and so

𝜒 (𝑆) =
𝑘∑︁
𝑗=1

1
2𝜋

∫
𝜕𝑇𝑗

arccos
(
⟨𝑉 , 𝑒1⟩
∥𝑉 ∥

) ′
𝑑𝑠 =

𝑘∑︁
𝑗=1

ℑ(𝑝 𝑗 ). □

Corollary (Hairy Ball Theorem). There does not exist a smooth nowhere vanishing vector field
𝑉 ∈ 𝐶∞(𝑇S2).
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Appendix

Theorem (Inverse Function Theorem). Let Ω ⊆ R𝑛 be open, 𝑓 : Ω → R𝑛 be a 𝐶∞ function, and
𝑓 (𝑎) = 𝑏. Suppose 𝐷𝑓 (𝑎) is invertible (as an 𝑛×𝑛 matrix). Then there exists open sets𝑈 ,𝑉 ⊆ R𝑛

with 𝑎 ∈ 𝑈 and 𝑏 ∈ 𝑉 , and a unique function 𝑔 : 𝑉 → 𝑈 with 𝑔(𝑏) = 𝑎 such that

𝑔 ◦ 𝑓 (𝑦) = 𝑦, ∀𝑦 ∈ 𝑈 ,
𝑓 ◦ 𝑔(𝑥) = 𝑥, ∀𝑥 ∈ 𝑉 .

That is 𝑔 is a local inverse to 𝑓 . Moreover, 𝑔 is also a 𝐶∞ function with

𝐷𝑔(𝑥) = 𝐷𝑓 (𝑔(𝑥))−1, ∀𝑥 ∈ 𝑉 .

Theorem (Implicit Function Theorem). Let Ω ⊆ R𝑛+𝑘 be open and 𝐹 : Ω → R𝑘 be a𝐶∞-function.
Denote 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛, 𝑦 = (𝑦1, . . . , 𝑦𝑘 ) ∈ R𝑘 , and

𝐹 (𝑥,𝑦) =
©«
𝐹1(𝑥,𝑦)

...

𝐹𝑘 (𝑥,𝑦)

ª®®¬ =
©«
𝐹1(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑘 )

...

𝐹𝑘 (𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑘 )

ª®®¬ .
Suppose (𝑎, 𝑏) ∈ Ω is such that 𝐹 (𝑎, 𝑏) = 𝑐 ∈ R𝑘 , and that the 𝑘 × 𝑘 matrix

𝜕𝐹

𝜕𝑦
(𝑎, 𝑏) =

©«
𝜕𝐹1
𝜕𝑦1

(𝑎, 𝑏) · · · 𝜕𝐹1
𝜕𝑦𝑘

(𝑎, 𝑏)
...

. . .
...

𝜕𝐹𝑘
𝜕𝑦1

(𝑎, 𝑏) · · · 𝜕𝐹𝑘
𝜕𝑦𝑘

(𝑎, 𝑏)

ª®®®¬ ,
is invertible. Then, there exists open sets 𝑈 ⊆ R𝑛, 𝑉 ⊆ R𝑘 with 𝑎 ∈ 𝑈 and 𝑏 ∈ 𝑉 , and a unique
function 𝜑 : 𝑈 → 𝑉 such that 𝜑 (𝑎) = 𝑏 and

𝐹 (𝑥, 𝜑 (𝑥)) = 𝑐, ∀𝑥 ∈ 𝑈 .

Moreover, 𝜑 is a 𝐶∞ function with Jacobian matrix(
𝜕𝜑

𝜕𝑥

)
︸︷︷︸
𝑘×𝑛

= −
(
𝜕𝐹

𝜕𝑦

)−1
︸  ︷︷  ︸
𝑘×𝑘

·
(
𝜕𝐹

𝜕𝑥

)
︸︷︷︸
𝑘×𝑛

, ∀𝑥 ∈ 𝑈 .

Written in full, this is the equation

©«
𝜕𝜑1
𝜕𝑥1

(𝑥) · · · 𝜕𝜑1
𝜕𝑥𝑛

(𝑥)
...

. . .
...

𝜕𝜑𝑘
𝜕𝑥1

(𝑥) · · · 𝜕𝜑𝑘
𝜕𝑥𝑛

(𝑥)

ª®®®¬ = −
©«
𝜕𝐹1
𝜕𝑦1

(𝑥, 𝜑 (𝑥)) · · · 𝜕𝐹1
𝜕𝑦𝑘

(𝑥, 𝜑 (𝑥))
...

. . .
...

𝜕𝐹𝑘
𝜕𝑦1

(𝑥, 𝜑 (𝑥)) · · · 𝜕𝐹𝑘
𝜕𝑦𝑘

(𝑥, 𝜑 (𝑥))

ª®®®¬
−1 ©«

𝜕𝐹1
𝜕𝑥1

(𝑥, 𝜑 (𝑥)) · · · 𝜕𝐹1
𝜕𝑥𝑛

(𝑥, 𝜑 (𝑥))
...

. . .
...

𝜕𝐹𝑘
𝜕𝑥1

(𝑥, 𝜑 (𝑥)) · · · 𝜕𝐹𝑘
𝜕𝑥𝑛

(𝑥, 𝜑 (𝑥))

ª®®®¬ .

80


	Introduction
	Curves
	Regular curves
	Arc length
	Curvature, Torsion, and the Frenet formulas
	Isometries of Euclidean space
	Existence and Uniqueness of Linear ODEs
	Fundamental Theorem of Curves

	Regular Surfaces
	Local Graphs
	Level sets
	Surfaces of Revolution
	Differentiable Functions
	Tangent Planes

	Geometry of Surfaces
	First Fundamental Form
	Area
	Orientability
	Gauss Map and Shape Operator
	Second Fundamental Form

	Curvature
	Gaussian Curvature
	Principal curvatures
	Mean curvature
	Theorem Egregium
	Covariant Derivatives
	Geodesics

	Abstract Manifolds
	Global Geometry
	Local Gauss-Bonnet
	Euler Characteristic
	Gauss-Bonnet
	Closed Orientable Surfaces
	Poincaré-Hopf Index Theorem

	Appendix

