Lecture 19: Recorp: QR method to find eigenvalues Algorithm: (QR algorithm) Input : A E Mnxn (IR) Step 1: Let A(0) = A. Compute QR factorization of A(0) = Q.R. Let A(") = R. R. Step 2: Assume A(", ..., A(k) are computed. Let A(k) = QKRK. be the QR factorization of A(K) Let A(K+1) = RKQK.

Observation: 1. QR method gives a sequence of matrices:

$$\begin{bmatrix} A^{(0)} = A, A^{(1)}, A^{(2)}, \dots, A^{(k)}, \dots \end{bmatrix}$$
2. Now, $A^{(1)} = R_0 Q_0 = Q_0^{-1} Q_0 R_0 Q_0 = Q_0^{-1} A Q_0$

$$A^{(1)} \text{ is similar to } A \quad (A \text{ has } f_{4}^{(0)} A = A Q_0 - A Q_0$$

$$(\det (A^{(1)} - \lambda I)) = \det (Q_0^{-1} A^{(0)} Q_0 - \lambda I)$$

$$= \det (Q_0^{-1} (A^{(0)} - \lambda I) Q_0) = \det (A^{(0)} - \lambda I)$$

$$Similarly, A^{(2)} = R_1 Q_1 = Q_1^{-1} Q_1 R_1 Q_1 \sim A^{(1)}$$

$$A = A^{(0)} \sim A^{(1)} \sim A^{(2)} - \cdots \wedge A^{(k)} \sim - -$$

$$A = A^{(k)} \text{ converges for an upper triangular matrix, then the diagond extries of A^{(k)} will converges to all eigenvalues of A^{(k)}$$

In general, if we choose
$$\overline{\chi}^{(\circ)} = Ci \overline{g}i + Citi \overline{g}iti + ... + Cn \overline{g}n (Ci \neq o)$$

then the power method converges $t_0 = |\lambda_i|$.
To determine ALL eigenvalue, choose n initial guesses;
 $\overline{\xi} \overline{\chi}_{1}^{(\circ)}, \overline{\chi}_{2}^{(\circ)}, ..., \overline{\chi}_{n}^{(\circ)} \overline{\zeta} \rightarrow \chi^{(\circ)} = (\overline{\chi}_{1}^{(\circ)} \overline{\chi}_{2}^{(\circ)} - ... \overline{\chi}_{n}^{(\circ)}) \in Mnxn(IR)$
Goal: Apply Power's method on $\chi^{(\circ)}$.
Let $V^{(k)} = A^{k} \chi^{(\circ)}$
 Ne hope that $V^{(k)} \rightarrow (k_{1}\overline{g}_{1} + k_{2}\overline{g}_{2} - ... + k_{n}\overline{g}_{n})$ for
 $some$ constants $k_{1}, k_{2}, ..., k_{N}$

-

Strategy: Make sure that AKX^(o) (after some normalization is orthogond)

How? QR factorization.

Consider an initial guess X(...) (usually In) Take the "orthogonal part" of X(0): X⁽⁰⁾ = Q⁽⁰⁾ R⁽⁰⁾ (QR factorization) Apply the Power's method on Q(0) to get; $W = A \overline{Q}^{(\circ)}$ Repeat : take "orthogonal part" of W: $W = (Q^{(1)} R^{(1)})$ Power's method on Q(1) to get Apply W= AQ" etc...

Algorithm: (Simultaneous (terration) (X) Input: Initial matrix $\chi^{(0)} = (\vec{x}_1^{(0)} - \cdots \vec{x}_n^{(0)}) \in Mnxn(IR).$ Output: $\overline{Q}^{(K)} \rightarrow (\vec{g}_1 \vec{g}_2 - \cdots \vec{g}_n)$ Step1: Obtain QR factorization of $\chi^{(0)} = \overline{Q}^{(0)} R^{(0)}$ Step2: For $k=1,2,\ldots$, let $W = A\overline{Q}^{(k-1)}$ Obtain QR factorization of $W = \overline{Q}^{(k)} R^{(k)}$ keep iteration going. Let $A^{(k)} = \overline{Q}^{(k)T} A \overline{Q}^{(k)}$ Step 3: Remark: To ensure the uniquenes of QR factorization, R is restricted to have positive diagonal entries.

Recap: QR method can be written as ,
Input:
$$A \in Mnxn(IR)$$

Output: $Q^{(k)}$, $A^{(k)}$
Step1: Let $A_{QR}^{(\circ)} = A$
Step2: For $k=1/2, ...$, obtain QR factorizatin of
 $A_{QR}^{(k-1)} = Q_{QR}^{(k)} R_{QR}^{(k)}$
Let $A_{QR}^{(k)} = R_{QR}^{(k)} Q_{QR}^{(k)}$

-

-

0.047

12

-

2

12

-

Recall: QR method can be written as: (XX) Input: A & Maxn (IR) Output: Q(k) Step 1: Let A_{QR}⁽⁰⁾ = A. Step 2: For k=1, 2, ..., obtain QR factorization of: A_{QR}^(k-1) = O^(k)_{QR} R_{QR}^(k) Let A_{QR}^(k) = R^(k)_{QR} O^(k)_{QR} Let $\overline{O}_{QR}^{(k)} = O^{(k)}_{QR} O^{(k)}_{QR}$ and $\overline{R}^{(k)}_{QR} = R^{(k)}_{QR} R^{(k+1)}_{QR} \dots R^{(k)}_{QR}$

osta

of the same

ACCOUNT AND AND

Theorem

6

Theorem: 1.
$$A_{QR}^{(k)} = A^{(k)}$$

2. $\overline{Q}_{QR}^{(k)} = \overline{Q}^{(k)}$
3. $\overline{R}_{QR}^{(k)} = \overline{R}^{(k)}$
4. $A^{k} = \overline{Q}^{(k)} \overline{R}^{(k)} = \overline{Q}_{QR}^{(k)} \overline{R}_{QR}^{(k)}$
5. $A^{(k)} = (\overline{Q}^{(k)})^{T} A \overline{Q}^{(k)} = (\overline{Q}_{QR}^{(k)})^{T} A \overline{Q}_{QR}^{(k)}$
Remark: QR method and Power's method produces the
(Simultaneous iteration)
SAME sequences of matrices
They are equivalent.

-

octor

Proof: We use mathematical induction on
$$k$$
.
When $k=1$. Consider (X)
 $A^{(1)} = \overline{Q}^{(1)T} A \overline{Q}^{(1)} = \overline{Q}^{(1)T} W \overline{Q}^{(1)}$ QR factorization of $A = W$
 $= \overline{Q}^{(1)T} \overline{Q}^{(1)} R^{(1)} Q^{(1)} R^{(1)} R^{(1)} Q^{(1)} R^{(1)} R^{(1)$

Suppose now that the statement is true for
$$k-1$$
.
For k , consider (*)
 $A^{k} = A A^{k-1} = A \overline{Q}^{(k-1)} \overline{R}^{(k-1)}$
 $= W \overline{R}^{(k-1)} = \overline{Q}^{(k)} R^{(k)} \overline{R}^{(k-1)} = \overline{Q}^{(k)} \overline{R}^{(k)}$
Now, consider (**):
 $A^{k} = A A^{k-1} = A \overline{Q}^{(k-1)} \overline{R}^{(k-1)} = \overline{A} (G_{ar}^{(1)} Q_{ar}^{(2)} \dots Q_{ar}^{(k-1)} R_{ar}^{(k-1)} R_{ar}^{(k-2)} R_{ar}^{(1)}$
 $A^{k} = A A^{k-1} = A \overline{Q}^{(k-1)} \overline{R}^{(k-1)} = A (G_{ar}^{(1)} Q_{ar}^{(2)} \dots Q_{ar}^{(k-1)} R_{ar}^{(k-1)} R_{ar}^{(k-2)} R_{ar}^{(1)}$
 $= Q_{ar}^{(1)} R_{ar}^{(1)} G_{ar}^{(1)} \Omega_{ar}^{(2)} \dots Q_{ar}^{(k-1)} R_{ar}^{(k-2)} R_{ar}^{(1)}$
 $= Q_{ar}^{(1)} R_{ar}^{(1)} G_{ar}^{(2)} \dots Q_{ar}^{(k-1)} R_{ar}^{(k-1)} - R_{ar}^{(1)}$
 $= G_{ar}^{(1)} Q_{ar}^{(2)} R_{ar}^{(2)} \Omega_{ar}^{(2)} \dots Q_{ar}^{(k-1)} R_{ar}^{(k-1)} - R_{ar}^{(1)}$
 $= G_{ar}^{(1)} Q_{ar}^{(2)} \dots Q_{ar}^{(k)} R_{ar}^{(k)} - R_{ar}^{(1)} = \overline{Q}_{ar}^{(k)} \overline{R}_{ar}^{(k)}$

i { Q QR, R QR } and { Q (k), R (k) } are both QR factorization of Ak. $\widehat{Q}_{QR} = \widehat{Q}_{R}^{(k)}$ and $\widehat{R}_{QR}^{(k)} = \widehat{R}^{(k)}$. Now, $A_{RR}^{(k)} = R_{RR}^{(k)} Q_{RR}^{(k)} = Q_{RR}^{(k)} Q_{RR}^{(k)} R_{RR}^{(k)} Q_{RR}^{(k)}$ $\overline{A_{ar}^{(k+1)}} = \overline{Q}_{ar}^{(k-1)T} \overline{A} \overline{Q}_{ar}^{(k+1)}$ = Q & T Q (k-1)T A Q ar Q ar QUEIT QUEI = Q(K) TA Q(K) (11, (2), (3), (4) and (5) $\overline{Q}^{(k)T}A \overline{Q}^{(k)} = A^{(k)}$ By M T. We does not for N=k. By M.I, the statement is true for all k