Lecture 16:
Recall: Assume A is diagonalizable. We can estimate the spectral
radius
$$\rho(A)$$
 of A as follows:
Start with an initial vector $\vec{x}^{(0)}$.
Consider the iterative scheme: $\vec{x}^{(k+1)} = \frac{A \vec{x}^{(k)}}{\|A \vec{x}^{(k)}\|_{\infty}}$ for $k=0,1,...$
 $P_{k} = \|A \vec{x}^{(k)}\|_{\infty} \rightarrow \rho(A)$ as $k \rightarrow \infty$
(assuming that $|A_{1}| > |A_{2}| \ge |A_{3}| \ge \cdots \ge |A_{1}|$ where $A_{1}, A_{2}, -.., A_{1}$
are the eigenvalues of A_{1})

$$\frac{E \times \text{ample} : \text{Consider} : A = \begin{pmatrix} 0 & 11 & -5 \\ -2 & 17 & -7 \\ -4 & 26 & 10 \end{pmatrix} \text{ Using power method with } \\ \overline{X}^{(0)} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \text{ find the spectral radius of } A.$$

$$\frac{Solution: \overline{X}^{(1)}}{1|A\overline{X}^{(0)}||_{\infty}} = \frac{(6, 8, 12)^{T}}{1|(6, 8, 12)^{T}||_{\infty}} = \begin{pmatrix} \frac{1}{2} \\ \frac{2}{3} \\ 1 \end{pmatrix}.$$

$$\overline{X}^{(2)} = \frac{A\overline{X}^{(1)}}{1|A\overline{X}^{(1)}||_{\infty}} = \frac{(73, 1\%, 1/3)^{T}}{1|(73, 1\%, 1/3)^{T}||_{\infty}} = \begin{pmatrix} \frac{7}{6} \\ 5/8 \\ 1 \end{pmatrix}.$$

$$\frac{Compute }{1|A\overline{X}^{(k)}||_{\infty}} = \frac{(0)}{1|(73, 1\%, 1/3)^{T}||_{\infty}} = \begin{pmatrix} \frac{7}{6} \\ 5/8 \\ 1 \end{pmatrix}.$$

$$\frac{F_{1}}{1|A\overline{X}^{(k)}||_{\infty}} = \frac{10}{10} \text{ Ax}^{(k)} = \frac{10}{10} \text{ Ax}^$$

2

1

-

.

How about if A is NOT diagonalizable?
(Jordan Canonical Form)
Let
$$A = V J V^{-1}$$
, $J = Jordan$ (anonical Form
Since the dominant eigenvalue, λ_1 , has multiplicity 1,
the first Jordan block of A must be a 1×1 matrix.
 $J = \begin{pmatrix} \lambda_1 \\ J(\lambda_{12}) \end{pmatrix}$
Recall :
 $J(\lambda_{13}) = \begin{pmatrix} \lambda_{13} \\ \lambda_{13} \end{pmatrix}$

Assuming that $\vec{X}^{(0)} = C_1 \vec{v}_1 + C_2 \vec{v}_2 + \dots + C_n \vec{v}_n$, where $\{\vec{v}_1, \dots, \vec{v}_n\}$ are column vectors of V, which are linearly independent. Note: $\vec{v}_{1} = \text{eigenvector of } \lambda_{1}$ $\left(A\left(\overrightarrow{v}_{1}, \overrightarrow{v}_{2}, \ldots, \overrightarrow{v}_{n}\right) = \left(\overrightarrow{v}_{1}, \overrightarrow{v}_{2}, \ldots, \left(\overrightarrow{v}_{n}, \overrightarrow{v}_{2}, \ldots, \overrightarrow{v}_{n}\right)\right)$ $\left(A\left(\overrightarrow{v}_{1}, \overrightarrow{v}_{2}, \ldots, \overrightarrow{v}_{n}\right) = \left(\overrightarrow{v}_{1}, \overrightarrow{v}_{2}, \ldots, \overrightarrow{v}_{n}\right)$ $\overrightarrow{v}_{1} = \lambda_{1}, \vec{v}_{1}$

Assume
$$C_{1} \neq 0$$
, then:
 $\vec{X}^{(k)} = \frac{A^{k} \vec{X}^{(0)}}{\|A^{k} \vec{X}^{(0)}\|_{\infty}} = \frac{(V J V^{1})^{k} \vec{X}^{(0)}}{\|(V J V^{-1})^{k} \vec{X}^{(0)}\|_{\infty}}$
 $= \frac{(V J^{k} V^{-1}) (C_{1} \vec{V}_{1} + C_{2} \vec{V}_{2} + ... + C_{n} \vec{V}_{n})}{\|(V J^{k} V^{-1}) (C_{1} \vec{V}_{1} + C_{2} \vec{V}_{2} + ... + C_{n} \vec{V}_{n})\|_{\infty}}$
 $= \frac{V J^{k} (C_{1} \vec{e}_{1} + C_{2} \vec{e}_{2} + ... + C_{n} \vec{e}_{n})}{\|V J^{k} (C_{1} \vec{e}_{1} + C_{2} \vec{e}_{2} + ... + C_{n} \vec{e}_{n})\|_{\infty}} (1 + V^{-1} \vec{V}_{0} = \vec{e}_{j} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \end{pmatrix}$
 $= \frac{C_{1} \lambda_{1}^{k} (\vec{V}_{1} + \frac{1}{C_{1}} V (\frac{1}{\lambda_{1}} J)^{k} (C_{2} \vec{e}_{2} + ... + C_{n} \vec{e}_{n})\|_{\infty}}{\|V J^{k} \vec{e}_{1} = \lambda_{1}^{k} \vec{e}_{1} \end{pmatrix} (Note: J^{k} \vec{e}_{1} = \lambda_{1}^{k} \vec{e}_{1})$

0.047

-

-

Now,
$$(\frac{1}{\lambda_{1}}J)^{k} = \begin{pmatrix} \left[\frac{1}{\lambda_{1}}J(\lambda_{1})\right]^{k} \\ \left[\frac{1}{\lambda_{1}}J(\lambda_{1})\right]^{k} \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 0 \\ 0 \\ \vdots \\ \ddots \end{pmatrix} \xrightarrow{\left[\frac{\lambda_{1k}}{\lambda_{1}}\right] < 1} \\ \left[\frac{\lambda_{1k}}{\lambda_{1}}\right] < 1 \\ \frac{1}{\lambda_{1k}} <$$

-

Generalization of Power method
Consider an invertible matrix A. Suppose A has eigenvalues:

$$|\lambda_1| > |\lambda_2| > ... > |\lambda_n| (>0)$$

Consider A⁻¹ (exist as all eigenvalues are non-Zero). Then A⁻¹ has eigenvalues:
 $\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, ..., \frac{1}{\lambda_n}$ with $|\frac{1}{\lambda_n}| > \frac{1}{|\frac{1}{\lambda_{n_1}}|} > ... > |\frac{1}{\lambda_1}|$
Extension: Apply Power's method on A⁻¹ to obtain $|\frac{1}{\lambda_n}|$.
..., the minimal eigenvalue can be determined! (Inverse Power method)
Remark: Computing A⁻¹ is difficult! We solve: $A\vec{y} = \vec{x}^{(n)}$ in each iteration
to determine $A^{-1}\vec{x}^{(n)}$.
Finding A⁻¹ is equivalent to solving:
 $A\vec{y} = (\frac{1}{2}), A\vec{y} = (\frac{1}{2}), ..., A\vec{y} = (\overset{\circ}{\underline{0}})$.
 A^{-1}