Lecture 12

Webul Theorem for eigenvalues Gerschoorin Theorem Consider $\vec{e} = \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix} = eigenvector of A = (a_{ij})_{i \le i, j \le n}$ with eigenvalue χ $\begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix}$ Then: $A\vec{e} = \chi \vec{e}$. Maxn (C)For $1 \le i \le n$, $\frac{n}{\ge} A_{ij} e_j = A e_i$ $(\Rightarrow) a_{ii} e_{ii} + \sum_{j=1}^{2} a_{ij} e_j = \lambda e_i$ $(a_{ii} - \lambda) e_{ii} = -\sum_{j=1}^{n} a_{ij} e_{j}$ $|a_{ii} - \lambda||e_i| \leq \sum_{j=i}^{2} |a_{ij}||e_j|$.ī+i

Let I be the index such that les > lej for Uj $|a_{ll} - \lambda||e_{l}| \leq \sum_{j=1}^{n} |a_{lj}||e_{j}| \leq \sum_{j=1}^{n} |a_{lj}||e_{l}|$ Then: $i = |a_{kl} - \lambda| \leq \sum_{\substack{j=1\\j\neq l}} |a_{kj}|$ $\lambda \in B_{a_{\mu}}\left(\sum_{\substack{j=1\\j\neq k}}^{n} |a_{ij}|\right)$ Note: We don't know l'unless are Ball of radius 2 (ag) centered at a JEA know 2 and E. centered at all BUT : we can conclude: $\lambda \in B_{a_{jl}}(\sum_{j=1}^{n} |a_{ij}|) \subseteq \bigcup_{i=1}^{n} B_{a_{ii}}(\sum_{j=1}^{n} |a_{ij}|)$

 $= \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} (Eigenvalues : \lambda_1 = 3, 618 \\ \lambda_2 = 2.618 \end{pmatrix}$ Example: Let 23=1-382 For 1=1,4 $B_{all}\left(\frac{1}{\sum_{j=1}^{4}|a_{lj}|\right) = \left\{ \lambda : |\lambda-2| \leq 1 \right\}$ For 1=2,3, $B_{a\mu}\left(\frac{2}{j=1}|a_{j}|\right) = \frac{2}{3} = \frac{1}{3} = \frac{1}{2} = \frac{2}{3}$ A is symmetric, all eigenvalues are real,in all eigenvalues are between 0 and 4 $\therefore p(A) \leq 4$

Condition for Jacobi (Gauss - Seidel to converse
Definition: A matrix
$$A = (a_{ij})_{i \le i, j \le n}$$
 is called strictly diagonally
dominant (SDD) if $|a_{ii}| > \sum_{j \ne i}^{n} |a_{ij}|$ for $i=1,2,...,n$
(SPD)
Theorem: If a matrix A is SDD, then A is non-singular.
Proof: All eigenvalues $A \in \bigcup_{l=1}^{n} B_{a_{ll}}(\sum_{j \ne l} |a_{lj}|)$
 A is SDD iff $|a_{ll}| > \sum_{l=1}^{n} |a_{lj}|$ for $l=1,2,...,n$
(SPD)
 A is SDD iff $|a_{ll}| > \sum_{l=1}^{n} |a_{lj}|$ for $l=1,2,...,n$
 $f = la_{lj}$ for $l=1,2,...,n$
 f

Lecture 14: A is SDD. The Jacobi method converges if (Solve: Axef heorem: Proof: Note: $X_i^{m+1} = -\frac{1}{a_{ii}}\sum_{j=1}^{n} a_{ij} X_j^m + Let \vec{x}^* = sol of A\vec{x} = \vec{f}$, we have: $\frac{f_i}{a_{ii}} (\star) \quad for \quad 1^{-1,2,\ldots,n}.$ $X_{i}^{*} = -\frac{1}{a_{ii}} \sum_{j=1}^{2} a_{ij} X_{j}^{*} + \frac{f_{i}}{a_{ii}} (\star \star)$ i=1,2,..,n $(x) - (x \times)$ e_i^{m+i} $-\frac{1}{a_{ii}}\sum_{j=1}^{n}a_{ij}e_{j}^{m}$ $\sum_{\substack{j=1\\j\neq i}}^{n} \frac{|a_{ij}|}{|a_{ii}|} |e_j^m| \leq \sum_{\substack{j=1\\j\neq i}}^{n} \frac{|a_{ij}|}{|a_{ii}|} ||e_j^m||_{\infty} \leq r ||e^m||_{\infty} f_{n}^r$ $(e_i) = (e_i)$ $\sum_{j=1}^{n} \frac{(a_{ij})}{(a_{ii})} < 1 \quad (||e^m||_{w}) \stackrel{\text{def}}{=} \max \{|e_j^m|\}$ where r = max

-

Induction on
$$\dot{v}$$
:
When $i=l$, $(e_{1}^{m+1}| \leq \sum_{j=2}^{n} \left| \frac{a_{ij}}{a_{ii}} \right| |e_{j}^{m}| \leq \|e^{m}\|_{\infty} \sum_{j=2}^{n} \left| \frac{a_{ij}}{a_{ii}} \right|$
if the statement is true when $i=l$, $\leq r \|e^{m}\|_{\infty}$
Assume $|e_{k}^{m+1}| \leq r \|e^{m}\|_{\infty}$ for $k=1,2,\ldots,i-1$
Then: $|e_{i}^{m+1}| \leq \sum_{j=1}^{i-1} \left| \frac{a_{ij}}{a_{ii}} \right| |e_{j}^{m}|_{\infty} + \sum_{j=i+1}^{n} \left| \frac{a_{ij}}{a_{ii}} \right| |e_{j}^{m}|_{\infty}$
 $\leq r \|e^{m}\|_{\infty} \sum_{j=1}^{i-1} \left| \frac{a_{ij}}{a_{ii}} \right| |e_{j}^{m}|_{\infty} + \|e^{m}\|_{\infty} \sum_{j=i+1}^{n} \left| \frac{a_{ij}}{a_{ii}} \right|$

Gane

By M.I.,
$$|e_i^{m+1}| \leq r ||e^{m|l_{\infty}} \text{ for } i=(,2,...,n)$$

 $||e^{m+1}||_{\infty} \leq r ||e^{m|l_{\infty}}$
 $\Rightarrow ||e^{m|l_{\infty}} \leq r^{m}||e^{\circ}||_{\infty} \rightarrow \vec{o} \text{ as } m \rightarrow \infty$
 $m r < 1.$
 $\therefore G-S. \text{ converges } [!]$

-

Example: Consider
$$A\vec{x} = \begin{pmatrix} 10 & 1 \\ L & 10 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 12 \\ 21 \end{pmatrix} = \vec{b}$$

A is SDP. i. Both Jacobi and G-S method converger.
For Jacobi method, $\vec{x}^{R+1} = \begin{pmatrix} 10 & 0 \\ 0 & (0) \end{pmatrix}^{-1} \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \vec{x}^{R} + \begin{pmatrix} 10 & 0 \\ 0 & [0 \end{bmatrix}^{-1} \begin{pmatrix} 12 \\ -1 \end{pmatrix}$
Let $M_J = \begin{pmatrix} 10 & 0 \\ 0 & [0 \end{bmatrix}^{-1} \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -y_{10} \\ -y_{10} \end{pmatrix}$
Eigenvalues of M_J are $\lambda_I = \chi_I \circ$ and $\lambda_Z = -\chi_I \circ$. MJ is
diagonalizable.
 $\therefore P(M_J) = \chi_I \circ$. $\therefore \|Ie^{M}\|_{\infty} \leq \begin{pmatrix} y_{10}^{M} \\ 10 \end{pmatrix}^{M} k_J \in \text{const}$ depending on
the initial error \vec{e}°
Recall: $\vec{e}^{M} = \lambda_I^{M} \left(a_I \vec{u}_I + \sum_{i=2}^{N} a_i \left(\frac{\lambda_i}{\lambda_I} \right)^{M} \vec{u}_i \right)$ where
 $\vec{e}^{\circ} = \sum_{i=1}^{N} a_i \vec{u}_i$

For Gauss-Seidel,
$$\vec{X}^{R+1} = \begin{pmatrix} 10 & 0 \\ 1 & 10 \end{pmatrix}^{-1} \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix} \vec{X}^{R} + \begin{pmatrix} 10 & 0 & -1 \\ 1 & 10 \end{pmatrix} \begin{pmatrix} 12 \\ 21 \end{pmatrix}$$

Let $M_{G-S} = \begin{pmatrix} 10 & 0 & -1 \\ 1 & 10 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1/0 \\ 0 & 1 \end{pmatrix}^{-1}$
Eigenvalues of M_{G-S} are $\mathcal{X}_1 = \begin{pmatrix} 0 & -1/0 \\ 0 & 0 \end{pmatrix}^{-1}$
 $i \quad \rho(M_{G-S}) = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1/0 \\ 0 & 1 \end{pmatrix}^{-1}$
 $i \quad G-S$ converges fastar.
Remark: To reduce the error by a factor of 10^{-M} , bre
need about $R \geq \frac{M}{-10S_{10}(P(M))}$ iterations.
Jacobi: $R \geq \frac{M}{-10S_{10}(K_0)} = M$
 $G-S : R \geq -\frac{10S_{10}(K_0)}{-1S_{10}(K_0)} = \frac{M}{-1}$