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Introduction

We will construct empirical models based on the given data.

In Chap. 3, we construct a model by first assuming a particular type
of functions, and then fit the model to the data.

Key assumption: we need to have some knowledge about what types
of models are suitable.

In this chapter, we will construct empirical models:

• We do not assume that the model functions belong to a certain
type.

• The model is determined solely by the data.
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One-term models

Given a set of data points (xi, yi), our goal is to fit them to a model.

Q: how do we determine a suitable model function?

A: try😅😅😅

Main idea:

• Select functions f (x) and g(y) (e.g. the Tukey ladder of powers
x2, x,

√
x, ln(x), 1/

√
x, 1/x, 1/x2,...,);

• plot g(yi) vs f (xi);
• look for a linear relationship;
• use the model function g(y) = af (x) + b, determine a and b;
• if not, try other f (x) and g(y).
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Example: bluefish population

Consider the data set.

Bluefish

Remark: we can change the unit of y from lb to 104 lb.
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Example: bluefish population

Consider the data set.

We take f (x) = x and consider 4 cases:
• g(y) = y,
• g(y) = 1/√y,
• g(y) = √y,
• g(y) = ln(y).

We plot g(yi) vs f (xi).

Remark: we can change the unit of y from lb to 104 lb.
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Hence, we will fit the model function
√
y = ax + b

to the given data.

We let ỹ = √y.

From Chap. 3, we need to solve

a
( m∑

i=1

x2i
)
+ b

( m∑
i=1

xi
)

=
m∑
i=1

xiỹi,

a
( m∑

i=1

xi
)
+ b

( m∑
i=1

1
)

=
m∑
i=1

ỹi.
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Using the data set

m∑
i=1

x2i = 385,
m∑
i=1

xi = 55,
m∑
i=1

1 = 11,

m∑
i=1

xiỹi = 529.28,
m∑
i=1

ỹi = 79.06.

The linear system is

385a+ 55b = 529.28, 55a+ 11b = 79.06.

Solving it, we have a = 1.21 and b = 1.09.

The model is ỹ = 1.21x + 1.09.

Therefore, we have y = (1.21x + 1.09)2.

Kuang HUANG MATH3290-2024/25 8



The given data set
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The model function

For example, one can predict the bluefish population in 1995.

Let x = 11. Then y = 210.11. The bluefish population is 2,101,100lb.
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Example: temperature distribution

Assume you measure the temperature Y of a rod at various locations
X, and obtain the following data.

Consider 4 cases:
1. f (x) = x, g(y) = y ;
2. f (x) =

√
x, g(y) = √y ;

3. f (x) = ln(x), g(y) = √y ;
4. f (x) = ln(x), g(y) = ln(y).

We plot g(yi) vs f (xi).
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Hence, we will fit the model function

ln(y) = a ln(x) + b

to the given data.

We let x̃ = ln(x) and ỹ = ln(y).

From Chap. 3, we need to solve

a
( m∑

i=1

x̃2i
)
+ b

( m∑
i=1

x̃i
)

=
m∑
i=1

x̃iỹi,

a
( m∑

i=1

x̃i
)
+ b

( m∑
i=1

1
)

=
m∑
i=1

ỹi.
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Using the data set

m∑
i=1

x̃2i = 346.26,
m∑
i=1

x̃i = 53.87,
m∑
i=1

1 = 9,

m∑
i=1

x̃iỹi = 153.18,
m∑
i=1

ỹi = 19.63.

The linear system is

346.26a+ 53.87b = 153.18, 53.87a+ 9b = 19.63.

Solving it, we have a = 1.500 and b = −6.798.

The model is ỹ = 1.500x̃ − 6.798.

Therefore, we have ln(y) = 1.500 ln(x)− 6.798.

That is y = e−6.798x1.500.
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The given data set
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The model function

For example, one can predict the temperature at position X = 3000.

Let x = 3000.00. Then y = 183.470. Temperature Y = 183.470.
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Facts about one-term models
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The Tukey ladder of powers

• Note that functions in the Tukey ladder of powers are all
increasing or decreasing.

• Then y = g−1(af (x) + b) is either increasing or decreasing.
• One-term models are not suitable for non-monotonic data
patterns.
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High-order polynomial models

A disadvantage of one-term models: too simple to capture
complicated trend in the data.

In this part, we consider high-order polynomial models.

We obtain a function that goes through all data points.

Advantages of high-order polynomials: easy to differentiate and
integrate.

E.g. one can find the maximum temperature (differentiation).

E.g. one can find the distance from the speed (integration).
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Example: elapsed time of a tape recorder

We collected data relating the counter c on a tape recorder with its
elapsed playing time t.
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Example: elapsed time of a tape recorder

We collected data relating the counter c on a tape recorder with its
elapsed playing time t.

We construct an empirical model using a high-order polynomial.
Moreover, note that c is the independent variable.

We will find a 7-th order polynomial, denoted P7(c), passing through
all data points.
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Recall, we have the data set:

We need that P7(c) goes through all data points:

Note:

• We change the unit of c.
• We obtain a system of 8 linear equations.
• This is the so-called Vandermonde system.
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Solving the above linear system:

The following plot is about P7(c) and the data.
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Lagrangian form of polynomial

Given a set of (n+ 1) data points (xi, yi), i = 0, 1, 2, . . . ,n, we need to
find a polynomial P(x) of degree n passing through all data points.

It is difficult to solve a large linear system of (n+ 1)× (n+ 1).

We can conveniently find P(x) using Lagrangian bases:

Lk(x) =
n∏

i=0,i 6=k

x − xi
xk − xi

.

The P(x) can be written as

P(x) = y0L0(x) + y1L1(x) + · · ·+ ynLn(x).

Note:
Lk(xk) = 1, Lk(xj) = 0, j 6= k.
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Example

Consider the data set (there are 4 data points):

We need to find a 3-rd order polynomial.

Using the above Lagrangian bases, we have
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Advantages and disadvantages

Constructing an empirical model by a high-order polynomial—

Advantages:

• is “usually” easy to write down (using Lagrangian bases),
• has a better ability to capture complicated trends (cf. one-term
models),

• can be differentiated and integrated easily.

However, it may—

Disadvantages:

• contain too many oscillations (see Example 1),
• be very sensitive to errors in the data (see Example 2).
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Example 1

Consider the following data set.

The data suggests that, the model function should be an increasing
function.
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Assume that we construct a 6-th order polynomial model.

We get (using, for example, the Lagrangian bases)

y =− 0.0138x6 + 0.5084x5 − 6.4279x4 + 34.8575x3

− 73.9916x2 + 64.3128x − 18.0951.

Note that, the function changes
from increasing to decreasing.

Therefore, this model function
may not give good predictions.
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Example 2

Consider the data set:

xi 0.2 0.3 0.4 0.6 0.9
Case 1: yi 2.7536 3.2411 3.8016 5.1536 7.8671
Case 2: yi 2.7536 3.2411 3.8916 5.1536 7.8671

We consider fitting the data by a 4-th order polynomial:

P4(x) = a0 + a1x + a2x2 + a3x3 + a4x4.

We assume that Case 1 gives the exact data.

In Case 2, we assume there is a measurement error at xi = 0.4.
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The results are shown in the following table.

a0 a1 a2 a3 a4
Case 1 2 3 4 −1 1
Case 2 3.4580 −13.2000 64.7500 −91.0000 46.0000

Thus, a small error in the data gives a completely different solution.
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Smoothing

Recall that, high-order polynomials give too many oscillations and
are sensitive to errors.

We introduce smoothing, which is a technique of using lower-order
polynomials to capture the trend in the data.
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Note:
• Using a 9-th order
polynomial (10 data points)
gives an oscillatory model
function.

• Using a lower-order
polynomial (quadratic in this
case) gives a smoother
model function which can
still capture the trend.

• The lower-order polynomial
does not necessarily pass
through all data points.
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Two decisions of smoothing

The process of smoothing requires two decisions:

1. the order of the interpolating polynomial must be selected—
• we discuss this now,
• the main tool is using divided differences;

2. the coefficients of the polynomial must be determined—
• one uses the methods introduced in Chap. 3, since the type of the
model function has been determined,

• e.g. the least-squares criterion.
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Divided differences

Consider the data points (x1, y1), (x2, y2) and (x3, y3).

• y2−y1
x2−x1 can be regarded as an
approximation to the first
derivative over [x1, x2],

• y3−y2
x3−x2 can be regarded as an
approximation to the first
derivative over [x2, x3].

These are called first divided differences.
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How about second derivatives (the derivative of the first derivative)?

One can use the number
y3−y2
x3−x2 −

y2−y1
x2−x1

x3 − x1

as an approximation to the
second derivative over the
interval [x1, x3].

This is called a second divided difference.
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We obtain the following table, called the divided difference table.

General rule: Assume n-th divided differences are obtained. To get
(n+ 1)-th divided differences, we take the difference between
adjacent n-th divided differences and then divide it by the length of
the interval over which the change has taken place.
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An example

Consider the data set:

We obtain the following divided difference table:

Kuang HUANG MATH3290-2024/25 33



Example: tape recorder (revisited)

Consider the data set

We have already constructed a 7th-order polynomial model.

We will now construct a lower-order polynomial model.

Two steps:

• determine the order of the polynomial;
• find the coefficients in the polynomial.
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Step1️⃣: We need divided differences. We obtain the following
divided difference table:

From the table, we see the third divided differences are almost zero.

Hence, it is reasonable to assume that a quadratic polynomial will fit
the data well.
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Step2️⃣: We will fit a quadratic polynomial P(c) = a+ bc + dc2.

We use the least-squares criterion:

S(a,b,d) =
m∑
i=1

|ti − (a+ bci + dc2i )|
2.

Taking partial derivatives,

0 =
∂S
∂a

=
m∑
i=1

(−2)(ti − a− bci − dc2i ),

0 =
∂S
∂b

=
m∑
i=1

(−2ci)(ti − a− bci − dc2i ),

0 =
∂S
∂d

=
m∑
i=1

(−2c2i )(ti − a− bci − dc2i ).
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Hence, we obtain the following system:

a(
m∑
i=1

1) + b(
m∑
i=1

ci) + d(
m∑
i=1

c2i ) =
m∑
i=1

ti,

a(
m∑
i=1

ci) + b(
m∑
i=1

c2i ) + d(
m∑
i=1

c3i ) =
m∑
i=1

citi,

a(
m∑
i=1

c2i ) + b(
m∑
i=1

c3i ) + d(
m∑
i=1

c4i ) =
m∑
i=1

c2i ti,

where ci and ti are obtained from the table:
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Using the data, we have

8a+ 36b+ 204d = 9128,
36a+ 204b+ 1296d = 53,189,

204a+ 1296b+ 8772d = 343,539.

Solving it, we have

a = 0.142, b = 194.226, d = 10.464.

Thus, the model function is

P(c) = 0.142+ 194.226c + 10.464c2.
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We see that a lower-order polynomial can effectively capture the
trend.
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Example: stopping distance

Problem: Determine the stopping distance as a function of the speed
of the car.

The following data set is obtained.

We will construct a model using a lower-order polynomial.
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Step1️⃣: Construct a divided difference table.

Note: 3-rd divided differences are small compared to first and
second divided differences.

We will, again, find a quadratic model P(v) = a+ bv + cv2.
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Step2️⃣: Similar to the previous example, we obtain the following
system:

a(
m∑
i=1

1) + b(
m∑
i=1

vi) + c(
m∑
i=1

v2i ) =
m∑
i=1

di,

a(
m∑
i=1

vi) + b(
m∑
i=1

v2i ) + c(
m∑
i=1

v3i ) =
m∑
i=1

vidi,

a(
m∑
i=1

v2i ) + b(
m∑
i=1

v3i ) + c(
m∑
i=1

v4i ) =
m∑
i=1

v2i di,

where vi and di are obtained from the data set:
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Using the data, we have

13a+ 650b+ 37050 c = 2652.5,
650a+ 37050b+ 2307500 c = 163970,

37050a+ 2307500b+ 152343750 c = 10804975.

Solving it, we have

a = 50.0594, b = −1.9701, c = 0.0886.

Thus, the model function is

P(v) = 50.0594− 1.9701v + 0.0886v2.
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We obtained a good model: P(v) = 50.0594− 1.9701v + 0.0886v2.
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Cubic spline model

We discuss cubic spline models in this section.

Key idea:

• Focus locally first.
• Use local low-order polynomials.
• Connect the low-order polynomials to obtain the global fitted
curve.

What is a cubic spline?

It is a cubic polynomial between successive data points.
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Cubic spline: A function that is a cubic polynomial between
successive data points.

Consider data points: (x1, y1), (x2, y2) and (x3, y3).

The cubic spline S(x) is
• a cubic polynomial on [x1, x2]

S1(x) = a1 + b1x + c1x2 + d1x3,

• a cubic polynomial on [x2, x3]

S2(x) = a2 + b2x + c2x2 + d2x3.

Q: How do we find S(x)?
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The following conditions are required for finding S(x). Note that we
need 8 conditions.

• S(x) goes through data points.
On the interval [x1, x2]:

y1 = S1(x1) = a1 + b1x1 + c1x21 + d1x31 ,
y2 = S1(x2) = a1 + b1x2 + c1x22 + d1x32.

On the interval [x2, x3]:

y2 = S2(x2) = a2 + b2x2 + c2x22 + d2x32,
y3 = S2(x3) = a2 + b2x3 + c2x23 + d2x33.

Remark
There are 4 conditions.
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• S′(x) is continuous at interior data
points

S′1(x) = b1 + 2c1x + 3d1x2,
S′2(x) = b2 + 2c2x + 3d2x2.

Continuity at x2:

b1+2c1x2+3d1x22 = b2+2c2x2+3d2x22.

• S′′(x) is continuous at interior data
points

S′′1 (x) = 2c1 + 6d1x,
S′′2 (x) = 2c2 + 6d2x.

Continuity at x2:

2c1 + 6d1x2 = 2c2 + 6d2x2.

Remark
We have 2 more
conditions.

Kuang HUANG MATH3290-2024/25 48



Finally, we need 2 extra conditions.

The following choice gives the natural cubic spline.

• S′′(x) = 0 at the two end-points

S′′1 (x) = 2c1 + 6d1x,
S′′2 (x) = 2c2 + 6d2x.

At x1:
2c1 + 6d1x1 = 0.

At x3:
2c2 + 6d2x3 = 0.

Remark
The last 2 conditions.
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An example

Consider the data set:

x 1 2 3
y 5 8 25

We first write down the equations.

• S(x) goes through data points:
On the interval [1, 2]:

5 = S1(1) = a1 + b1(1) + c1(1)2 + d1(1)3,
8 = S1(2) = a1 + b1(2) + c1(2)2 + d1(2)3.

On the interval [2, 3]:

8 = S2(2) = a2 + b2(2) + c2(2)2 + d2(2)3,
25 = S2(3) = a2 + b2(3) + c2(3)2 + d2(3)3.
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x 1 2 3
y 5 8 25

• S′(x) is continuous at interior data points:

b1 + 2c1(2) + 3d1(2)2 = b2 + 2c2(2) + 3d2(2)2.

• S′′(x) is continuous at interior data points:

2c1 + 6d1(2) = 2c2 + 6d2(2).

• S′′(x) = 0 at the two end-points
At x1:

2c1 + 6d1(1) = 0,

At x3:
2c2 + 6d2(3) = 0.
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The idea is to first solve c1, d1, c2, d2 in terms of b1, b2.

From the last four equations, we have

c1 =
b2 − b1
8

, d1 =
b1 − b2
24

,

c2 =
3(b1 − b2)

8
, d2 =

b2 − b1
24

.

Using these in the first 4 equations,

5 = a1 + b1 +
b2 − b1
8

+
b1 − b2
24

,

8 = a1 + 2b1 +
b2 − b1
2

+
b1 − b2
3

,

8 = a2 + 2b2 +
3(b1 − b2)

2
+
b2 − b1
3

,

25 = a2 + 3b2 +
27(b1 − b2)

8
+
9(b2 − b1)

8
.
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Eliminating a1 and a2, we get

3 = 11b1 + b2
12

, 17 = 13b1 − b2
12

.

Solving, we get
b1 = 10, b2 = −74.

The other six unknowns can be solved easily

a1 = 2,a2 = 58, c1 = −10.5, c2 = 31.5, d1 = 3.5,d2 = −3.5.

Hence the cubic spline S(x) is

S1(x) = 2+ 10x − 10.5x2 + 3.5x3, x ∈ [1, 2],
S2(x) = 58− 74x + 31.5x2 − 3.5x3, x ∈ [2, 3].
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S1(x) = 2+ 10x − 10.5x2 + 3.5x3,
x ∈ [1, 2],

S2(x) = 58− 74x + 31.5x2 − 3.5x3,
x ∈ [2, 3].

For example, if we need to predict the value at x = 1.67, we can
evaluate S(1.67).

Since 1.67 ∈ [1, 2], we have S(1.67) = S1(1.67) = 5.72.
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Generalization

The construction of cubic spline can be generalized.

Let (xi, yi), i = 1, 2, . . . , m+ 1 be a set of data points.

The cubic spline S(x) is a cubic polynomial on each [xi, xi+1],

S(x) =



S1(x) = a1 + b1x + c1x2 + d1x3, x ∈ [x1, x2],
S2(x) = a2 + b2x + c2x2 + d2x3, x ∈ [x2, x3],

...
Sm(x) = am + bmx + cmx2 + dmx3, x ∈ [xm, xm+1].

We need 4m equations.
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First, S(x) goes through all data points.

On [x1, x2],

y1 = S1(x1) = a1 + b1x1 + c1x21 + d1x31 ,
y2 = S1(x2) = a1 + b1x2 + c1x22 + d1x32.

On [x2, x3],

y2 = S2(x2) = a2 + b2x2 + c2x22 + d2x32,
y3 = S2(x3) = a2 + b2x3 + c2x23 + d2x33.

On [xm, xm+1],

ym = Sm(xm) = am + bmxm + cmx2m + dmx3m,
ym+1 = Sm(xm+1) = am + bmxm+1 + cmx2m+1 + dmx3m+1.

There are 2m equations.
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Second, S′(x) is continuous at interior points.

At x2, we need S′1(x2) = S′2(x2):

b1 + 2c1x2 + 3d1x22 = b2 + 2c2x2 + 3d2x22.

At x3, we need S′2(x3) = S′3(x3):

b2 + 2c2x3 + 3d2x23 = b3 + 2c3x3 + 3d3x23.

At xm, we need S′m−1(xm) = S′m(xm):

bm−1 + 2cm−1xm + 3dm−1x2m = bm + 2cmxm + 3dmx2m.

There are m− 1 equations.
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Third, S′′(x) is continuous at interior points.

At x2, we need S′′1 (x2) = S′′2 (x2):

2c1 + 6d1x2 = 2c2 + 6d2x2.

At x3, we need S′′2 (x3) = S′′3 (x3):

2c2 + 6d2x3 = 2c3 + 6d3x3.

At xm, we need S′′m−1(xm) = S′′m(xm):

2cm−1 + 6dm−1xm = 2cm + 6dmxm.

There are m− 1 equations.
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Finally, we add 2 more conditions at end-points,

S′′1 (x1) = 0, S′′m(xm+1) = 0.

That is,
2c1 + 6d1x1 = 0, 2cm + 6dmxm+1 = 0.

There are totally 4m equations.

We can determine all coefficients in S(x).

One needs to write a computer code to solve this. For example, there
is a built-in class CubicSpline in scipy—a famous python
package—to do this, and you generally need to a few lines of codes.
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A remark

The choice
S′′1 (x1) = 0, S′′m(xm+1) = 0

gives the least energy.

Let G be the cubic spline with other choices of G′′(x1) and G′′(xm+1),
then we have ∫ xm+1

x1

(
S′′

)2 dx ≤
∫ xm+1

x1

(
G′′)2 dx.

To show this∫ xm+1

x1

(
G′′)2 dx =

∫ xm+1

x1

(
G′′ − S′′ + S′′

)2 dx

=

∫ xm+1

x1

(
G′′ − S′′

)2 dx + 2
∫ xm+1

x1

(
G′′ − S′′

)
S′′ dx +

∫ xm+1

x1

(
S′′

)2 dx.
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We will show ∫ xm+1

x1

(
G′′ − S′′

)
S′′ dx = 0.

Indeed, ∫ xm+1

x1

(
G′′ − S′′

)
S′′ dx =

m∑
i=1

∫ xi+1

xi

(
G′′ − S′′

)
S′′ dx

=
m∑
i=1

{
−
∫ xi+1

xi

(
G′ − S′

)
S′′′ dx +

(
G′ − S′

)
S′′

∣∣∣xi+1
xi

}
=

m∑
i=1

{
−
∫ xi+1

xi

(
G′ − S′

)
S′′′ dx

}
=

m∑
i=1

{
− S′′′i

(
(G− S)(xi+1)− (G− S)(xi)

)}
= 0.
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Summary
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Disclaimer

All figures, tables, and data appearing in the slides are only used for
teaching under guidelines of Fair Use.
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