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Introduction

We will construct empirical models based on the given data.

In Chap. 3, we construct a model by first assuming a particular type
of functions, and then fit the model to the data.

Key assumption: we need to have some knowledge about what types
of models are suitable.

In this chapter, we will construct empirical models:

- We do not assume that the model functions belong to a certain
type.
- The model is determined solely by the data.
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One-term models

Given a set of data points (x;,y;), our goal is to fit them to a model.
Q: how do we determine a suitable model function?

AtvE @ @

Main idea:

- Select functions f(x) and g(y) (e.g. the Tukey ladder of powers
X2, %, /X, In(X), 1/v/X, 1/%, 1/X2,...);

- plot g(y;) vs f(x;);

- look for a linear relationship;

- use the model function g(y) = af (x) + b, determine a and b;

- if not, try other f(x) and g(y).



Example: bluefish population

Consider the data set.

Year Bluefish (Ib)
1940 15,000
1945 150,000
1950 250,000
1955 275,000
1960 270,000
1965 280,000
1970 290,000
1975 650,000
1980 1,200,000
1985 1,500,000
1990 2,750,000 Bluefish

Remark: we can change the unit of y from b to 10* Lb.
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Example: bluefish population

Consider the data set.

Year Bluefish (Ib)

1940 15,000 We take f(x) = x and consider 4 cases:
1945 150,000 . -

1950 250,000 gly) =y,

1955 275,000 . —

1960 270,000 9(y) Y
1965 280,000 - g(y) = VY,

1970 290,000

1975 650,000 © g(y) = In(y).
1980 1,200,000 _ _
1985 1,500,000 We plot g(y;) vs f(x))-
1990 2,750,000

Remark: we can change the unit of y from b to 10* Lb.
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Hence, we will fit the model function

Vy=ax+b
to the given data.

We lety = /.
From Chap. 3, we need to solve

a(éxg)m(
CI(ZX,) +b(

m
=1

m
X,) = > X
)

i i=1
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Mgl
I
¥

Vi
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Using the data set

m

m m
> xi =385 > xi=55 > 1=11,
i=1 i=1

i=1

m m
> xiJj =529.28, > ¥ =79.06.
i=1

i=1

The linear system is
385a + 55b = 529.28, 55a + 11b = 79.06.

Solving it, we have a = 1.21and b = 1.09.
The model is ¥y = 1.21x 4 1.09.
Therefore, we have y = (1.21x + 1.09)2.
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Year Bluefish (Ib)
1940 15,000
1945 150,000
1950 250,000
1955 275,000
1960 270,000
1965 280,000
1970 290,000
1975 650,000
1980 1,200,000
1985 1,500,000
1990 2,750,000

The given data set

250

200

150

The model function

For example, one can predict the bluefish population in 1995.

Let x = 11. Then y = 210.11. The bluefish population is 2,101,1001b.
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Example: temperature distribution

Assume you measure the temperature Y of a rod at various locations
X, and obtain the following data.

Observation

number X Y Consider 4 cases:
1 35.97 0.241 f(x) =x, g(y) =
2 67.21 0.615
3 92.96 1.000 f(x)=vx gly) = \fy,
4 141.70 1.881
5 483.70 11.860 fO) =In(x), aly) = V¥
6 886.70 29.460 In(x), In
7 1783.00 84.020 f(x) = In(x), gy) = In(y).
8 2794.00 164.800 We DlOt a(vi) vs f(x).
9 3666.00 248.400
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Hence, we will fit the model function

In(y) =aln(x)+b
to the given data.
We let X = In(x) and ¥ = In(y).
From Chap. 3, we need to solve

m

o(3o%) +(;

o(F8) oo

i=1

,) = Xi¥i,

i=1

1) - S 5.

i i=1

Mg EMS
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Using the data set

m

m m
D % =34626, » % =53.87, » 1=09,
i=1 i=1

i=1

m m
> X =153.18, )y =19.63.
i=1

i=1

The linear system is
346.26a + 53.87b = 153.18, 53.87a + 9b = 19.63.

Solving it, we have a = 1.500 and b = —6.798.
The model is § = 1.500X — 6.798.
Therefore, we have In(y) = 1.500 In(x) — 6.798.

That is y = e=6798x1500,
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Observation

number X Y 250
1 35.97 0.241 200
2 67.21 0.615
3 92.96 1.000 150
4 141.70 1.881
5 483.70 11.860 100
6 886.70 29.460
7 1783.00 84.020 50
8 2794.00 164.800
9 3666.00 248.400 0

0 1000 2000 3000 4000

The given data set )
The model function

For example, one can predict the temperature at position X = 3000.

Let x = 3000.00. Then y = 183.470. Temperature Y = 183.470.
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Facts about one-term models

2

T
i
— In(z)+1

- UYya
—— 1z
1/2?

The Tukey ladder of powers

- Note that functions in the Tukey ladder of powers are all
increasing or decreasing.

- Theny = g~'(af (x) + b) is either increasing or decreasing.

- One-term models are not suitable for non-monotonic data
patterns.
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High-order polynomial models

A disadvantage of one-term models: too simple to capture
complicated trend in the data.

In this part, we consider high-order polynomial models.
We obtain a function that goes through all data points.

Advantages of high-order polynomials: easy to differentiate and
integrate.

E.g. one can find the maximum temperature (differentiation).

E.g. one can find the distance from the speed (integration).
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Example: elapsed time of a tape recorder

We collected data relating the counter ¢ on a tape recorder with its
elapsed playing time t.

ci | 100 200 300 400 500 600 700 800

t; (sec) | 205 430 677 945 1233 1542 1872 2224

Kuang HUANG MATH3290-2024/25



Example: elapsed time of a tape recorder

We collected data relating the counter c on a tape recorder with its
elapsed playing time t.

ci | 100 200 300 400 500 600 700 800

ti (sec) | 205 430 677 945 1233 1542 1872 2224
We construct an empirical model using a high-order polynomial.
Moreover, note that c is the independent variable.
We will find a 7-th order polynomial, denoted P;(c), passing through

all data points.

P:(c) = ag + a c + arc® + asc® + agc* + asc® + age® + asc’
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Recall, we have the data set:

cj | 100 200 300 400 500 600 700 800

tj (sec) ‘ 205 430 677 945 1233 1542 1872 2224

We need that P;(c) goes through all data points:

205 = ag + la; + 12a, + Pas + 1*ay + 1°as + 1%a6 + 17a;
430 = ag + 2a, + 22a» + 23az + 2*as + 2°as + 2%a¢ +27a;

2224 = ag + 8a, + 8%a, + 8%as + 8%ay + 8°as + 8%ag + 87y

Note:

- We change the unit of c.
- We obtain a system of 8 linear equations.
- This is the so-called Vandermonde system.
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Solving the above linear system:

ap = —13.9999923 ay = —5.354166491
a; = 232.9119031 as = 0.8013888621
a; = —29.08333188 as = —0.0624999978
az = 19.78472156 a7 = 0.0019841269

The following plot is about P;(c) and the data.

2000
1500

1000

Kuang HUANG MATH3290-2024/25



Lagrangian form of polynomial

Given a set of (n + 1) data points (x;,y;), i = 0,1,2,...,n, we need to
find a polynomial P(x) of degree n passing through all data points.

It is difficult to solve a large linear system of (n + 1) x (n +1).

We can conveniently find P(x) using Lagrangian bases:

The P(x) can be written as

P(x) = yoLo(X) + yaL1(X) + - - - + YnLn(X).

Note:
Lk(xf?) =1, Lf?(Xj) = 07 /7é k.
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Consider the data set (there are 4 data points):

X | X1 X2 X3 X4

y | »1 Y2 V3 Y4

We need to find a 3-rd order polynomial.

Using the above Lagrangian bases, we have

Py(x) = (x —x2)(x — x3)(x — xq) y (x —xp)(x — x3)(x — xq) y
? (1 =2 =) (¥ —x0) (=) (% — x3) (6 —xg)
(r = x1)(x = x2)(x — xg) (x — x1)(x — x2)(x — x3)

(63 — ) (s —12) (63 —x0) > (ra— 1) (ra — ) (ra —x3)
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Advantages and disadvantages

Kuang HUAN

Constructing an empirical model by a high-order polynomial—
Advantages:

- is “usually” easy to write down (using Lagrangian bases),

- has a better ability to capture complicated trends (cf. one-term
models),

- can be differentiated and integrated easily.

However, it may—

Disadvantages:

- contain too many oscillations (see Example 1),

- be very sensitive to errors in the data (see Example 2).



Example 1

Consider the following data set.

4000

3000
X | 0.55 1.2 2 4 6.5 12 16

vl os osr ss 102 210 2030 3900 2000

1000

I A N N

oloos o o+
2 4 6 8 10 12 14 16

The data suggests that, the model function should be an increasing
function.

=
1

.

K

Kuang HUANG



Assume that we construct a 6-th order polynomial model.

We get (using, for example, the Lagrangian bases)

y = — 0.0138x% 4 0.5084x° — 6.4279x" + 34.8575x3
— 73.9916x% + 64.3128x — 18.0951.

4000

Note that, the function changes
from increasing to decreasing.

3000

Therefore, this model function
may not give good predictions.

1000
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Example 2

Consider the data set:

X; 0.2 0.3 0.4 0.6 0.9
Case 1:y; | 2.7536 | 3.2411 | 3.8016 | 5.1536 | 7.8671
Case 2:y; | 2.7536 | 3.2411 | 3.8916 | 5.1536 | 7.8671

We consider fitting the data by a 4-th order polynomial:

Pu(x) = Qo + Q1 + x° + a3x® + agx*.

We assume that Case 1 gives the exact data.

In Case 2, we assume there is a measurement error at x; = 0.4.
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The results are shown in the following table.

do an a as Ay
Case 1 2 3 4 -1 1
Case 2 | 3.4580 | —13.2000 | 64.7500 | —91.0000 | 46.0000

Thus, a small error in the data gives a completely different solution.

10

— Case 1l /
---- Case 2 !
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Recall that, high-order polynomials give too many oscillations and
are sensitive to errors.

We introduce smoothing, which is a technique of using lower-order
polynomials to capture the trend in the data.

N

9th-order polynomial

»

Quadratic polynomial




Note:

- Using a 9-th order
polynomial (10 data points)
gives an oscillatory model
function.

v

9th-order polynomial (el
-

<

Quadratic polynomial

- Using a lower-order
polynomial (quadratic in this
case) gives a smoother
model function which can

still capture the trend.

- The lower-order polynomial
does not necessarily pass
through all data points.
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Two decisions of smoothing

The process of smoothing requires two decisions:

1. the order of the interpolating polynomial must be selected—

- we discuss this now,
- the main tool is using divided differences;

2. the coefficients of the polynomial must be determined—

- one uses the methods introduced in Chap. 3, since the type of the
model function has been determined,
- e.g. the least-squares criterion.
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Divided differences

Consider the data points (x1, y1), (X2, ¥2) and (xs, y3).

. % can be regarded as an Stope s 22222
. . A3
approximation to the first Slope is 22701
. . Xy — X,
derivative over [x;, ], S

R T 7]
o can be regarded as an (61, ) o2
approximation to the first
derivative over [xy, X3]. 9 _XZ i

These are called first divided differences.
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How about second derivatives (the derivative of the first derivative)?

One can use the number y 5 ¥
¥s 3 V3
s=Yo _ Yo=W1 ¥
X3—X3 X2—Xq
X3 —X

as an approximation to the
second derivative over the
interval [xy, x3]. = 5 et

This is called a second divided difference.

Kuang HUANG MATH3290-2024/25
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We obtain the following table, called the divided difference table.

(X3, ¥3)
First Second s 23702
Data divided difference divided difference X3 -
X1 y1
y2-n
X2 — X1

Y3—y2 Y2—n
X3— X2 X2 —X]
X3 = X1

X2 Y2

y3—)2
X3 — X2

General rule: Assume n-th divided differences are obtained. To get
(n 4+ 1)-th divided differences, we take the difference between
adjacent n-th divided differences and then divide it by the length of
the interval over which the change has taken place.
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Consider the data set:

We obtain the following divided difference table:

Data Divided differences
Xi Vi A A? A3
0 0
4/2= 12

2T A 2a= 6\\j§::i 0/6 =0
Ax =6 20/2 =10 = T>0/6=0

6 36 ~4/4=1—

s - ea | W2=14-

Kuang HUAN



Example: tape recorder (revisited)

Consider the data set

Cci | 100 200 300 400 500 600 700 800

t; (sec) | 205 430 677 945 1233 1542 1872 2224

We have already constructed a 7th-order polynomial model.
We will now construct a lower-order polynomial model.

Two steps:

- determine the order of the polynomial;
- find the coefficients in the polynomial.

Kuang HUANG



Step EB: We need divided differences. We obtain the following
divided difference table:

Data Divided differences
X i A A? A3 A*
;gg 421(3)(5) 2:2500 0.0011
300 677 igggg 0.0011 ggggg 0.0000
400 945 2.8800 0.0010 0'0000 0.0000
500 1233 ,%'0900 0.0011 0.0000 0.0000
600 1542 ;3000 0.0011 0'0000 0.0000
700 1872 3'5200 0.0011 :
800 2224 ’

From the table, we see the third divided differences are almost zero.

Hence, it is reasonable to assume that a quadratic polynomial will fit
the data well.

Kuang HUANG MATH3290-2024/25



Step B3: We will fit a quadratic polynomial P(c) = a + bc + dc?.
We use the least-squares criterion:
m
S(a,b,d) =>_ |ti— (a + bg; + dcf)P.
i=1

Taking partial derivatives,

95 &
0 = == (-2){t—a—bg—dc),
i=1
m
0 — % =3 (~26)(t — a— be; — dc?),
i=1
5
T

Il
N
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Hence, we obtain the following system:

m m m

ad_N+b>_c)+d> <)

=1 =1 =1

m m m
a(}_c) +bQ ) +d(D_c)

=1 =1 i=1

m m m

a}_ ) +b(Q3_c)+d(D )

=1 i=1 i=1

where ¢; and t; are obtained from the table:

ci | 100 200 300 400 500

m

= Z ti,
i=1

m
- Z Citfa
i=1
m
2
= 2. ct
i=1

600 700 800

G (sec) | 205 430 677 945 1233

MATH3290-2024/25
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Using the data, we have

8a+36b+204d = 9128,
36a 4+ 204b +1296d = 53,189,
204a +1296b + 8772d = 343,539.

Solving it, we have
a=0.142, b=194.226, d=10.464.
Thus, the model function is

P(c) = 0.142 + 194.226¢ + 10.464C7.

Kuang HUANG MATH3290-2024/25



We see that a lower-order polynomial can effectively capture the

trend.
2000 2000
1500 1500
1000 1000
500 500
2 4 6 8 2 4 6 8
Lower-order model High-order model
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Example: stopping distance

Problem: Determine the stopping distance as a function of the speed
of the car.

The following data set is obtained.

Speed v (mph) | 20 25 30 35 40 45 50 55 60 65 70 75 80

Distance d (ft) | 42 56 735 91.5 116 1425 173 209.5 248 2925 343 401 464

We will construct a model using a lower-order polynomial.

Kuang HUANG MATH3290-2024/25



Step EB: Construct a divided difference table.

Data Divided differences
v; d; A A2 A3 A*
20 42

2.2800
25 56 0.0700
30 735 izggg 0.0100 _ggggg 0.0006
35 91.5 : 0.1300 : —0.0007
40 116 :'2382 0.0400 732823 0.0004
45 142.5 6- 1000 0.0800 0'0027 0.0000
50 173 7'3000 0.1200 0'0053 —0.0004
55 209.5 . 0.0400 : 0.0005
60 248 7.7000 0.1200 0.0053 0.0003
65 292.5 12(1)388 0.1200 ggggg 0.0001
70 343 : 0.1500 : —0.0003
11.6000 —0.0033

75 401 12,6000 0.1000
80 464 :

Note: 3-rd divided differences are small compared to first and
second divided differences.

We will, again, find a quadratic model P(v) = a + bv + cv2.
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Step B3: Similar to the previous example, we obtain the following

system:
ad_N+bQ vy +cQovi) = D di
i=1 =1 i=1 i=1
aQ_v)+bQ_v))+e(3v) = Y vid,
=1 =1 =1 i=1

m m

aY_v))+bQ_v)+c(D_vi) = ) vid;
=1 i=1 =1 i=1

where v; and d; are obtained from the data set:

Speed v (mph) | 20 25 30 35 40 45 50 55 60 65 70 75 80

Distance d (ft) | 42 56 735 91.5 116 1425 173 209.5 248 2925 343 401 464

Kuang HUANG MATH3290-2024/25



Using the data, we have

13a+650b+37050¢c = 2652.5,
650 a + 37050 b 4 2307500¢c = 163970,
37050 a + 2307500 b + 152343750 ¢c = 10804975.

Solving it, we have

a =50.0594, b= —1.9701, c = 0.0886.
Thus, the model function is

P(v) = 50.0594 — 1.9701v 4 0.0886v>.

Kuang HUANG MATH3290-2024/25



We obtained a good model: P(v) = 50.0594 — 1.9701v + 0.0886V?.

Kuang HUANG
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Cubic spline model

We discuss cubic spline models in this section.
Key idea:
- Focus locally first.

- Use local low-order polynomials.

- Connect the low-order polynomials to obtain the global fitted
curve.

What is a cubic spline?

It is a cubic polynomial between successive data points.

Kuang HUANG




Cubic spline: A function that is a cubic polynomial between
successive data points.

Consider data points: (x1, 1), (X2,¥2) and (xs, y3).

The cubic spline S(x) is

VS () =a;+bx + o +dxX°
- a cubic polynomial on [x4, x;] 8,(x) = ay+ byx + ey + dyx

Si(X) = aq 4 bix + X% + dix3,

- a cubic polynomial on [x,, x3]

S(X) = @z + box + CX* + dox°.

Q: How do we find S(x)?

Kuang HUANG MATH3290-2024/25



The following conditions are required for finding S(x). Note that we
need 8 conditions.

Yy S ()=a;+bx + ot +dxX°

- S(x) goes through data points.

. S5(X) = Ay + byx + X% + dox?
On the interval [xq, X]: \ (3 ¥3)
Y1 = S1(1) = a1 + bixq + Cxé + dix,
Vo = S1(X2) = a1 + bixa + 1X3 + dix3. (2, )
| I > X

(X yy)
On the interval [xy, x3: 5 R
Y2 = S(X2) = Gz + boXo + Cox5 + x5, Remark
V3 = Sa(x3) = Gy + byxs + X3 + dx3. There are 4 conditions.

Kuang HUANG MATH3290-2024/25



- S'(x) is continuous at interior data

points

SH(X) = by 4 261X + 3d1x2,
Sh(X) = by 4 2Cox + 3d2x°.

Continuity at x»:

by+2¢1x; +3d1X% = by+20x; +3Cl2X§.

- S”(x) is continuous at interior data

Kuang HUANG

points

SY(x) = 2¢1 + 6d4x,
SY(x) = 2c; + 6dyx.

Continuity at x»:
2C1 + 6d1X; = 2¢; + 6d,X;.

MATH3290-2024/25

Y Si() =a;+bx + e+ dy 3

S5(X) = Ay + byx + X% + dyx®
_y o
(X2, )
| | > X

(e )
|
X1 X2 X3

Remark

We have 2 more
conditions.



Finally, we need 2 extra conditions.

The following choice gives the natural cubic spline.

VS =a;+bx + o +dxX°

- $”(x) = 0 at the two end-points $5(X) = @y + byx + % + do®
(3, y3)
SY(x) = 2¢y + 6dsx,
S5 (x) = 2¢, + 6dax.
(X2 ¥2)
1 Ly x

At Xq: (xhl )

2C1 + 6d1X1 = (0, M *2 *3
At X3: Remark

2¢; + 6dox3 = 0. The last 2 conditions.

Kuang HUANG MATH3290-2024/25



Consider the data set:

518125

We first write down the equations.

- S(x) goes through data points:
On the interval [1,2]:

5=5:(1) = ar + by(1) + c1(1)? + d1(1)?,
8 = 51(2) = a1 + b1(2) + c1(2)* + dh(2)°.

On the interval [2,3]:

S 52(2) =a, + b2(2) + C2(2)2
25 = 5,(3) = a; + b2(3) + ©&(3)*

+ +

Kuang HUANG MATH3290-2024/25



X112 3
518125

- S'(x) is continuous at interior data points:
by 4 2¢1(2) +3d1(2)? = by + 2¢2(2) + 3d2(2)%.
- S”(x) is continuous at interior data points:
2¢1 + 6d41(2) = 2¢, + 6d5(2).

- S”(x) = 0 at the two end-points
At Xxq:
201 + 6d1(1) =0,

At Xx3:
26, + 6d2(3) = 0.
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The idea is to first solve ¢4, d4, ¢, dy in terms of by, b,.

From the last four equations, we have

_ bo— by _ by —by
—5 0 h=T
3(b1 = bz) b2 - b1

°="Tg 0 %= Tx

Using these in the first 4 equations,

bz—b1+b1—b2

5=a1+b1+ ¢ ——
by—bi  bi—b,
8=a;+2b
@+ 2b1 + ~ o+
3(bi—b))  b—b
8:®+ﬂb+(12 2)+23 .

27(br — by) , (b2~ by)

25=a,+3b
2 +30) + 8 8

Kuang HUANG MATH3290-2024/25



Eliminating a; and a,, we get

- ’Hbq + bz 17 — 13b1 = b2

3 12 12

Solving, we get
b, =10, b, = —74.

The other six unknowns can be solved easily
a, = 2,02 = 58, G = 7’]05, G = 315, d1 = 3.57d2 = —3.5.
Hence the cubic spline S(x) is

Si(x) =2 +10x — 10.5x* +-3.5%°, x € [1,2],
Sa(x) = 58 — 74x +31.5x* — 3.5%°, x € [2,3].
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Sy(x) =2+ 10x — 10.5x> + 3.5%3

A S,(x) = 58 — T4x + 31.5x2 - 3.5°
sk \ % R T, Si(X) = 2 + 10% — 10.5¢% + 3.5:,
2r x € [1,2],
15+
ol S5(X) = 58 — 74x + 31.5x* — 3.5x°,
5k x € [2,3].
> X

For example, if we need to predict the value at x = 1.67, we can
evaluate S(1.67).

Since 1.67 € [1,2], we have 5(1.67) = $:(1.67) = 5.72.
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Generalization

The construction of cubic spline can be generalized.
Let (x;,yi), I1=1,2,...,m+1 be a set of data points.

The cubic spline S(x) is a cubic polynomial on each [x;, Xj,1],

Six) =ar+bix+ox®+did,  x € [x1,x],

Sz(X) =a; + box + C2X2 i d2X3, X € [X27X3].,
S(x) =

Sm(X) = am + bmX + cmX® + dmX3, X € [Xm, Xm1]-

We need 4m equations.
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First, S(x) goes through all data points.

on [x1, x2],

V1= 51 (X]) =a; + ijj + C1X12 -+ de%,
Y2 = S1(%2) = Q1 + bixa + X3 + dix3.

On [X2,X3],

Vo = 52(X2) =d, + bzXz + C2X§ + d2X§,
Y3 = S(X3) = Qp + boXs + CoX3 + 3.

On [Xm>Xm+1],

Ym = Sm(Xm) = 0m + bmXm + Cerzn als de?m

Ym+1 = Sm(Xm+1) =0m + bmXmyr + CmX,%nH + de?nJﬂ-
There are 2m equations.
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Second, §'(x) is continuous at interior points.

At x,, we need Si(x2) = S5(x2):

b1+ 2¢cix + 3C’1X§ = by +20x + 3C’2X%.

At x5, we need S5(x3) = S4(x3):

by +20x3 + 3d2X§ = b3 + 2C3x3 + 3d3X§.

At Xm, we need S, _(Xm) = Si(Xm):

bm—1+ 2Cm_1Xm 4 3dm_1X2, = by 4 2CmXm + 3dmx2,.

There are m — 1 equations.
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Third, S”(x) is continuous at interior points.

At x,, we need SY(x2) = SY(x2):

2¢1 + 6d1X2 =20 + 6d2X2.

At x5, we need SY(x3) = S{(x3):

2C, + 6d,X3 = 2¢3 + 6d3X3.

At Xm, we need S/, (Xm) = S (Xm):

2Cm—1 + 6dm_1Xm = 2Cm + 6dmXm.

There are m — 1 equations.
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Finally, we add 2 more conditions at end-points,
S{(x)=0,  Sp(Xm4r)=0.

That is,

2C, + 6dix; = 0, 2Cm + 6dem+1 =1 ()}
There are totally 4m equations.
We can determine all coefficients in S(x).

One needs to write a computer code to solve this. For example, there
is a built-in class CubicSpline in scipy—a famous python
package—to do this, and you generally need to a few lines of codes.
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The choice
S{(x1)=0,  Sp(Xm+1)=0

gives the least energy.

Let G be the cubic spline with other choices of G”(x;) and G (Xm+1),

then we have
Xm+41 2 Xm+1 2
/ (s") dxg/ (G")" dx.
X1 X1

To show this
Xm41 2 Xm-+1 )
[ e e [ (e -5t sy ax
X1 X1
Xm-+1 Xm+41 Xm-+1
:/ (6" - s") dx + 2/ (6" — $")S" dx + / (5")? dx.
X1 X1 X1
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We will show .
/ (G// _ S//)S//dX —
X1

Indeed,
Xm-+1 it Xit1
/ (G// _ S//)S// dx = Z/ (G// _ S//)S//dX
X1 =1 YXi
Xit1
o

i

X/+1

I
Ms

§)S" dx + (6" = S')S”

Il
EN

/e
/W

I
Mg

)5 ax)

Il
EA

Ms

> { -
> {-
{—s’“(e S)(Xiu1) — (G — S)(x ))}:o.

1
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Summary

EXAMINE
DATA

¥

NO _YES EXAMINE
TREND?

EXIT
. TLI
(REPLACE/DISCARD)

FIND ONE-TERM

— MODEL
(LADDER OF POWERS)

ONE-TERM MODEL
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FT
ADEQUATE _—>(

OTHER
ONE-TERM
MODELS

¥ No

CONSTRUCT
DIFFERENCE

¥

FIT LOW-ORDER

LOW-ORDER
POLYNOMIAL

__BEHAVIOR

CONSTRUCT

>=——  CUBIC (LINEAR) ADEQUATE? —
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Disclaimer

All figures, tables, and data appearing in the slides are only used for
teaching under guidelines of Fair Use.




