
MATH 3290 Mathematical Modeling
Chapter 12: Modeling with Systems of Differential
Equations

Kuang HUANG
April 9, 2025

Department of Mathematics
The Chinese University of Hong Kong



Midterm report

• Three achieved the full score 35, with the average score 29.65.
• Solutions will be released today on Blackboard.
• Keep up the great work!

Kuang HUANG MATH3290-2024/25 2



Future arrangements

• The final assignment will be released today. Treat it more like a
practice for the final exam, I will go over it in the last class on
April 16th.

• The final exam will be held on May 8th. There will be review
classes on April 11th.

• There is a summary note on the course webpage. You can use it
to prepare for the final exam.
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Introduction

We will discuss modeling with a system of differential equations.

Here, a system can model interactions among variables.

Note: Since analytical solutions cannot be found easily, we will
discuss the qualitative behaviors of the solution by the graphical
method. We will also introduce a numerical approximation method.

Kuang HUANG MATH3290-2024/25 4



Graphical solutions

Consider the following system of differential equations

dx
dt

= f (x, y), dy
dt

= g(x, y).

The solutions are x(t) and y(t).

We interpret the solution is the position (x(t), y(t)) of a particle at
time t. The xy-plane is called the phase plane.

As t varies, (x(t), y(t)) defines a path (or trajectory or orbit) in the
phase plane.

The particle moves in the phase plane in the direction of increasing t.
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Recall
dx
dt

= f (x, y), dy
dt

= g(x, y).

An equilibrium point (EP) (x0, y0) is a point for which
dx
dt

=
dy
dt

= 0.
That is,

f (x0, y0) = 0, g(x0, y0) = 0.

Stability of equilibrium point (EP): we say (x0, y0) is

• stable if any path starts close to the point remains close for all
future time;

• asymptotically stable if it is stable and the path approaches to
the point as t tends to infinity;

• unstable if it is not stable.
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An example: Consider

dx
dt

= −x + y, dy
dt

= −x − y.

It is easy to check that a solution

x(t) = e−t sin t, y(t) = e−t cos t.

The illustration shows that
• a path with the initial
position (x0, y0);

• the particle moves in the
direction of increasing t;

• (0, 0) is an asymptotically
stable equilibrium point (EP).
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Lorenz system

The Lorenz system:

dx
dt

= σ(y − x)

dy
dt

= x(ρ− z)− y

dz
dt

= xy − βz.

Note σ, ρ and β are parameters.
A trajectory of the Lorenz system.

• If ρ < 1, there exists one and only one asymptotically stable
equilibrium point.

• If ρ = 28, σ = 10, and β = 8/3, the Lorenz system has chaotic
solutions.
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A competitive hunter model

Suppose there are two types of fish—trout and bass.

Trout Bass
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A competitive hunter model

Suppose there are two types of fish—trout and bass.

We build a model to describe the interaction of them. We assume
that they compete for some limited resources, say food.

Let x(t) and y(t) be the populations of trout and bass, respectively.

Assumption 1: without the existence of bass, trout will grow without
limit, so we propose the following model

dx
dt

= ax, a > 0.

It says that the rate of change of trout population is proportional to
its population.
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Assumption 2: when bass exists, they will limit the growth of trout
because the two species will compete for food.

We model the decrease in the population by the product of x and y,
so we propose the following model

dx
dt

= ax − bxy, b > 0.

Following the same reasoning, we propose the following model for
the rate of change of bass population

dy
dt

= my − nxy, m,n > 0.
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Graphical analysis

The model is

dx
dt

= x(a− by), dy
dt

= (m− nx)y.

We will look at the phase plane.

Step1️⃣: locate the equilibrium points (EPs),

dx
dt

=
dy
dt

= 0, ⇒ x(a− by) = 0, (m− nx)y = 0.

Thus, there are 2 equilibrium points (EPs): (0, 0) and (m/n,a/b).

Step2️⃣: draw the lines where dx/dt = 0 or dy/dt = 0.

Note: dx/dt = 0 when x = 0 or y = a/b, and dy/dt = 0 when y = 0
or x = m/n.
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The above information are shown in the following figures.

Recall:

dx/dt = 0 when x = 0 or y = a/b, and dy/dt = 0 when y = 0 or
x = m/n. The lines divide the phase plane into 4 regions.
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Step3️⃣: determine movement of the particle in each region. First,
look at the lines where dx/dt = 0 or dy/dt = 0 again.

• The line x = m/n is shown.
• On the left, x < m/n, so

dy/dt = (m− nx)y > 0, thus the
particle always moves up.

• On the right, x > m/n, so
dy/dt = (m− nx)y < 0, thus the
particle always moves down.

The line of dy/ dt = 0
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• The line y = a/b is shown.
• In the lower region, y < a/b, so

dx/dt = x(a− by) > 0, thus the
particle always moves to the right.

• In the upper region, y > a/b, so
dx/dt = x(a− by) < 0, thus the
particle always moves to the left.

The line of dx/dt = 0
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Combining the above analysis, we obtain the following figure.
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Step4️⃣: determine stability of equilibrium points (EPs).

Consider the point (0, 0):
• if the particle starts near (0, 0),
which is in region C,

• clearly, the particle will move away
from (0, 0).

• (0, 0) is unstable.
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Stability of the other equilibrium point (EP).

Consider the point (m/n,a/b):
• if the particle starts near
(m/n,a/b), and in region D,

• clearly, the particle will move away
from (m/n,a/b).

• (m/n,a/b) is unstable.

Kuang HUANG MATH3290-2024/25 17



Step5️⃣: model interpretation.
• (m/n,a/b) is unstable, thus
co-existence is impossible.

• the initial condition is crucial to the
outcome:

• if starts in region A, bass
dominates;

• if starts in region D, trout
dominates;

• if starts in regions B or C, either
can happen.
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Program for 2D phase plots: pplane. You can download it from
https://www.cs.unm.edu/~joel/dfield/ (You need Java
Runtime Environment to run it).
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A predator-prey model

Suppose there are two types of species—whale and krill.

Whale and krill
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A predator-prey model

Suppose there are two types of species—whale and krill.

We build a model to describe the interaction of them. We assume
that whales eat the krill.

Let x(t) and y(t) be the populations of krill and whales, respectively.

Assumption 1: without the existence of whales, krill will grow without
limit, so we propose the following model

dx
dt

= ax, a > 0.

It says that the rate of change of krill population is proportional to
its population.

Kuang HUANG MATH3290-2024/25 20



Assumption 2: when whales exist, they will limit the growth of krill
because whales will eat krill.

We model the decrease in the population by the product of x and y,
so we propose the following model

dx
dt

= ax − bxy, b > 0.

That is
dx
dt

= x(a− by).

Kuang HUANG MATH3290-2024/25 21



Assumption 3: without the existence of krill, the population of
whales will decline, so we propose the following model

dy
dt

= −my, m > 0.

It says that the rate of decay of the whale population is proportional
to its population.

Assumption 4: when krill exist, they will provide foods to whales, and
this will increase the whale population.

We model the increase in the population by the product of x and y,
so we propose the following model

dy
dt

= −my + nxy, n > 0.
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Graphical analysis

The model is

dx
dt

= x(a− by), dy
dt

= (−m+ nx)y.

We will look at the phase plane.

Step1️⃣: locate the equilibrium points (EPs),

dx
dt

=
dy
dt

= 0, ⇒ x(a− by) = 0, (−m+ nx)y = 0.

Thus, there are 2 equilibrium points (EPs): (0, 0) and (m/n,a/b).

Step2️⃣: draw the lines where dx/dt = 0 or dy/dt = 0.

Note: dx/dt = 0 when x = 0 or y = a/b, and dy/dt = 0 when y = 0
or x = m/n. These lines divide the phase plane into four regions.
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Step3️⃣: determine movement of the particle in each region.
• On the left, x < m/n, so dy/dt < 0,
and the particle moves down.

• On the right, x > m/n, so
dy/dt > 0, and the particle moves
up.

• In the lower region, y < a/b, so
dx/dt > 0, particle moves to right.

• In the upper region, y > a/b, so
dx/dt < 0, particle moves to left.

Kuang HUANG MATH3290-2024/25 24



Hence, we obtain the following phase plane.

Step4️⃣: determine stability of equilibrium points (EPs),

From above, it is clear that (0, 0) is unstable.

The stability of (m/n,a/b) is not clear. Looks like the phase lines
rotate anticlockwise around it.
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We present further mathematical analysis for (m/n,a/b).

Recall that the model is

dx
dt

= x(a− by), dy
dt

= (−m+ nx)y.

We find a relation of x and y (i.e., a curve in the phase plane).

By the chain rule and the inverse function theorem

dy
dx

=
dy
dt

dt
dx

=
dy/dt
dx/dt

.

Thus,
dy
dx

=
(−m+ nx)y
x(a− by)

.
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We separate the variables,(
a
y
− b

)
dy =

(
n− m

x

)
dx.

Integrate both sides∫ (
a
y
− b

)
dy =

∫ (
n− m

x

)
dx.

So,
a ln y − by = nx −m ln x + k1, k1 is a constant.

Finally, we have

ya

eby
= K e

nx

xm
, K is a constant.
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Recall
ya

eby
= K e

nx

xm
.

Let f (y) = yae−by and g(x) = xme−nx . Then we have

f (y)g(x) = K.

Note this K should be determined by the initial condition (x(0), y(0)),
different K implies different phase lines.

We first state some properties of f (y) and g(x):

• f (0) = 0 and g(0) = 0;
• f and g tends to zero as y and x tends to infinity;
• f has a local(global) maximum at y = a/b, g has a local(global)
maximum at x = m/n.
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We have the following sketch for f (y) and g(x)

Here, My is the maximum value of f (y), and Mx is the maximum value
of g(x).
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Now, we look at the equation f (y)g(x) = K .

We consider three cases: K > MyMx , K = MyMx and K < MyMx .

Case 1: K > MyMx .

Clearly, the equation f (y)g(x) = K has no solution.

Case 2: K = MyMx .

Clearly, the equation f (y)g(x) = K has exactly one solution, which is
x = m/n and y = a/b. This is just the equilibrium point (m/n,a/b).
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Case 3: K < MyMx .

We write K = sMy and s < Mx . The equation g(x) = s has two
solutions, x = xm and x = xM.
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Recall, we are looking at the solution of f (y)g(x) = K .

Case 3a: if x < xm or x > xM, we have g(x) < s and

f (y) = K/g(x) = (sMy)/g(x) > My, since g(x) < s.

Hence, no solution.

Case 3b: if x = xm or x = xM, we have g(x) = s and

f (y) = K/g(x) = (sMy)/s = My.

Hence, two solutions (xm,a/b) and (xM,a/b).
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Case 3c: if xm < x < xM, we have g(x) > s and

f (y) = K/g(x) = (sMy)/g(x) < My, since g(x) > s.

Thus, we are able to find two solutions (x, y1(x)) and (x, y2(x)), where
xm < x < xM.
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Combining all the above discussions, we see that the trajectories are
periodic near (m/n,a/b).
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Step5️⃣: model interpretation.
• Co-existence of whales and krill are
possible, the point (m/n,a/b) is
stable.

• If starts at a point in x < m/n and
y > a/b (EP), both populations will
decrease.

• Similar for the other three cases.
• The two populations fluctuate
between their maximum and
minimum values.
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Effects of harvesting

Recall the model for whales and krill population is

dx
dt

= x(a− by), dy
dt

= (−m+ nx)y.

Let T be the time of one complete cycle.

We define the average levels over the cycle by

x = 1
T

∫ T

0
x(t) dt, y = 1

T

∫ T

0
y(t) dt.

We should have x(0) = x(T) and y(0) = y(T).

From the first differential equation

1
x

dx
dt

= a− by.
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Integrating with respect to t, then∫ T

0

1
x

dx
dt

dt =
∫ T

0
(a− by) dt

⇒
∫ T

0

d
dt

(ln x(t)) dt = a T − b T y

⇒ ln x(T)− ln x(0) = a T − b T y.

Since x(T) = x(0), we have
y = a

b
.

By the similar techniques, we have

x = m
n
.

Hence, the average levels are exact the equilibrium points.
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We assume that the fishing of krill will decrease its population at a
rate rx(t).

Since there is less food for whales, its population will also decrease
at a rate ry(t).

We have the new model

dx
dt

= x ((a− r)− by) , dy
dt

= (−(m+ r) + nx) y.

Using the same steps, the new average levels are

x = m+ r
n

, y = a− r
b

.

We see that, fishing of krill will actually increase the average level of
krill, and decrease the average level of whales.

This is known as Volterra’s principle.
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Stability analysis via linearization

We revisit our predator-prey model for whales and krill.

The system is:

dx
dt

= x(a− by), dy
dt

= (−m+ nx)y.

There are two equilibrium points (EPs): (0, 0) and (m/n,a/b).

The stability of equilibrium points can be determined via
linearization.
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Linearize the system near equilibrium points

Near (0, 0):
dx
dt

= ax, dy
dt

= −my.

Near
(m
n ,

a
b
)
:

dx
dt

= bm
n

(a
b
− y

)
,

dy
dt

= na
b
(−m

n
+ x).
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Linearize the system near equilibrium points

Near (0, 0): [
dx
dt
dy
dt

]
=

[
a 0
0 −m

][
x
y

]

Near
(m
n ,

a
b
)
: [

dx
dt
dy
dt

]
=

[
0 −bm

n
na
b 0

][
x − m

n
y − a

b

]
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Compute eigenvalues of the linearized system

For (0, 0): J =
[
a 0
0 −m

]
Eigenvalues: λ1 = a > 0, λ2 = −m < 0.
Eigenmodes: eat, e−mt.
Unstable equilibrium point!

For
(m
n ,

a
b
)
: J =

[
0 −bm

n
na
b 0

]
Eigenvalues: λ1 = i

√
ma, λ2 = −i

√
ma.

Eigenmodes: ei
√
mat, e−i

√
mat; or equivalently, sin(

√
mat), cos(

√
mat).

For the linearized system, it forms rotation around
(m
n ,

a
b
)
.

Not sure for the original nonlinear system.
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General system

For any system of differential equations:

dx
dt

= f (x, y), dy
dt

= g(x, y),

Step 1: Find equilibrium points
Solve f (x0, y0) = 0, g(x0, y0) = 0 to find equilibrium points (x0, y0).

Step 2: Linearize
Compute the Jacobian matrix at (x0, y0):

J =
[

∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

]
(x0,y0)

.
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General system

Step 3: Eigenvalue analysis
Find eigenvalues λ1, λ2 by solving det(J− λI) = 0.

• If either eigenvalue has a positive real part, the equilibrium
point is unstable.

• If both eigenvalues have negative real parts, the equilibrium
point is stable.

• Otherwise one needs further analysis (e.g., if both eigenvalues
are purely imaginary, or if any eigenvalue is zero).
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Euler’s method

Consider the system of differential equations

dx
dt

= f (t, x, y) dy
dt

= g(t, x, y)

with initial conditions

x(t0) = x0, y(t0) = y0.

We use the Euler’s method to find an approximate solution for t ≥ t0.

Idea: similar to the case with one differential equation, we
approximate the solution values by the values of tangent lines.
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The tangent line at the point (t0, x0) is

T(t) = x0 +
dx
dt

(t0)(t − t0).

By the system, we have

T(t) = x0 + f (t0, x0, y0)(t − t0).

Let t1 = t0 +∆t. Then we can use the value T(t1):

x1 = x0 + f (t0, x0, y0)∆t

as an approximation of x(t1).
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Similarly, the tangent line at the point (t0, y0) is

S(t) = y0 +
dy
dt

(t0)(t − t0).

By the system, we have

S(t) = y0 + g(t0, x0, y0)(t − t0).

Let t1 = t0 +∆t. Then we can use the value S(t1):

y1 = y0 + g(t0, x0, y0)∆t

as an approximation of y(t1).

Combining the above calculations,

x1 = x0 + f (t0, x0, y0)∆t,
y1 = y0 + g(t0, x0, y0)∆t.
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In general, we let
tn = t0 + n∆t

and let

xn = approximation of x(tn),
yn = approximation of y(tn).

The above shows that we can find xn, yn by

Euler’s method

xn+1 = xn + f (tn, xn, yn)∆t,
yn+1 = yn + g(tn, xn, yn)∆t.
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Example: competitive hunter model (refined)

Suppose there are two types of fish: trout and bass.

We build a model to describe the interaction of them. We assume
that they compete for some limited resources, say food.

Let x(t) and y(t) be the population of trout and bass, respectively.

Assumption 1: without the existence of bass, trout will grow with
limit, so we propose the following model

dx
dt

= ax(M− x), a,M > 0.
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Assumption 2: when bass exists, they will limit the growth of trout
because the two species will compete for food.

We model the decrease in the population by the product of x and y,
so we propose the following model

dx
dt

= ax(M− x)− bxy, b > 0.

Following the same reasoning, we propose the following model for
the rate of change of bass population

dy
dt

= my(N− y)− nxy, m,n,N > 0.
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Specifically, we consider

dx
dt

= x(10− x − y),

dy
dt

= y(15− x − 3y).

Suppose that, initially, x(0) = 5 and y(0) = 2.

We use the Euler’s method to predict the long term behavior.

We will compute the solution for 0 ≤ t ≤ 7 with ∆t = 0.1. So, we
need to perform 70 iterations.
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Step0️⃣: x0 = 5 and y0 = 2.

Step1️⃣:

x1 = x0 + f (t0, x0, y0)∆t = 5+ 0.1x0(10− x0 − y0) = 6.5,
y1 = y0 + g(t0, x0, y0)∆t = 2+ 0.1y0(15− x0 − 3y0) = 2.8.

Note that x1, y1 are approximate values of x(0.1) and y(0.1).

Step2️⃣:

x2 = x1 + f (t1, x1, y1)∆t = 6.5+ 0.1x1(10− x1 − y1) = 6.955,
y2 = y1 + g(t1, x1, y1)∆t = 2.8+ 0.1y1(15− x1 − 3y1) = 2.828.

Note that x2, y2 are approximate values of x(0.2) and y(0.2).

Continue until Step 70.

Kuang HUANG MATH3290-2024/25 53



We can plot the approximate values against time:
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We see that the solutions converge to the equilibrium value (7.5, 2.5).
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Disclaimer

All figures, tables, and data appearing in the slides are only used for
teaching under guidelines of Fair Use.
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