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Introduction

• We discuss modeling with a differential equation that relates a
quantity of interest and its derivatives.

• Differential equations model quantities that change
continuously in time, e.g., populations, concentration of
chemicals.

• In contrast, difference equations model quantities that change
in discrete time intervals.
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Population growth

Suppose that the population at time t = t0 is known, P0.

We want to predict the future population P(t), t ≥ t0.

Let k be the percentage growth per unit time and assume k is a
constant.

Then, from time t to t +∆t,
P(t +∆t)− P(t)

P(t)
= k∆t.

Thus,
P(t +∆t)− P(t)

∆t
= kP(t).

If ∆t is very small, we have
dP
dt

= kP.

Moreover, we have P(t0) = P0.
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The model is
dP
dt

= kP, P(t0) = P0.

To find P, we separate the variables

dP
P

= kdt.

Integrate both sides∫ 1
P

dP =

∫
k dt ⇒ lnP = kt + C.

Use the condition P(t0) = P0 to determine C,

lnP0 = kt0 + C ⇒ C = lnP0 − kt0.

Finally, we have lnP = kt + C = kt + lnP0 − kt0,

P(t) = P0ek(t−t0), exponential growth.
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The percentage growth rate per unit time k should not be a constant.

One choice of k (due to a mathematician P. F. Verhulst) is

k(t) = r
(
M− P(t)

)
, r > 0.

This suggests that the growth rate should be small when the
population reaches the maximum population M.

Hence, the model becomes

P(t +∆t)− P(t)
P(t)

= r(M− P(t))∆t.

Thus
P(t +∆t)− P(t)

∆t
= rP(t)(M− P(t)).
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When ∆t is sufficiently small, we have

dP
dt

= rP(M− P).

This is called the logistic model.

To find the solution, we separate the variables

dP
P(M− P)

= r dt.

Using partial fractions, we have

1
P(M− P)

=
1
M

(
1
P
+

1
M− P

)
.

The differential equations become

1
P

dP+
1

M− P
dP = rMdt.
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Recall that
1
P

dP+
1

M− P
dP = rMdt.

Integrate both sides,∫ 1
P

dP+

∫ 1
M− P

dP =

∫
rMdt.

Assuming P > 0 and P < M, we have

lnP− ln(M− P) = rMt + C.

Using the initial condition P(t0) = P0 to determine C,

lnP0 − ln(M− P0) = rMt0 + C.

Consequently,

lnP− ln(M− P) = rMt + (lnP0 − ln(M− P0)− rMt0) .
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Recall that

lnP− ln(M− P) = rMt + (lnP0 − ln(M− P0)− rMt0) .

Solving for P, we have

P(t) = MP0
P0 + (M− P0)e−rM(t−t0)

.

This gives a formula for finding P at any time t.

Remarks:

• We see that P(t) → M as t → ∞.
• Usually we assume M is given.
• To find the model parameter r > 0, we plot ln P

M−P against t, and
the slope of the line is rM.
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Consider the following data. We take M = 665.

We plot ln P
665−P against t, the slope is rM.

The value of rM can be obtained by the least squares method. We
have r = 8.27× 10−4.
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How to determine P0?

• Use the original data point, that is P0 = 9.6 from the table.
• Recall that

ln

(
P

M− P

)
= rMt + ln

(
P0

M− P0

)
− rMt0.

From the least squares method, we could obtain a linear model

ln

(
P

M− P

)
≈ kt + C,

and we can hence solve P0 by

C = ln

(
P0

M− P0

)
− rMt0.

Those two options should produce similar results.
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Hence, the model is P(t) = MP0
P0 + (M− P0)e−0.55(t−t0)

.

The model fits the data very well.
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Graphical methods

Most differential equations cannot be solved easily.

Graphical method gives a sketch of the solution.

The following information could be derived from the sketch:

1. equilibrium points (EPs) (points at which the derivative is zero),
2. signs of the first order derivative (increase/decrease),
3. signs of the second order derivative (convex/concave).

To obtain the above information, a phase line is helpful.
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Drawing a phase line

Consider the equation

dy
dx

= (y + 1)(y − 2).

Step��: locate the equilibrium points (EPs),

dy
dx

= 0 → (y + 1)(y − 2) = 0.

Hence, the equilibrium points (EPs) are y = −1 and y = 2.

We indicate this in the phase line:
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Recall the equation
dy
dx

= (y + 1)(y − 2).

Step��: determine the sign of y′.

We also put arrows (left → decrease, right → increase) to indicate
how the value of y change.
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Recall the equation
dy
dx

= (y + 1)(y − 2).

Step��: determine the sign of y′′

d2y
dx2

= (y + 1) dy
dx

+ (y − 2) dy
dx

= (2y − 1)(y + 1)(y − 2).

Indicate the sign information in the phase line.
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Step��: sketch the solution using information from phase line.

we observe

• for y < −1, the function is increasing, slope is decreasing;
• for −1 < y < 1/2, the function is decreasing, slope is increasing;
• for 1/2 < y < 2, the function is decreasing, slope is decreasing;
• for y > 2, the function is increasing, slope is increasing.
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Then we get the following sketch:

A useful program for phase plots: dfield. You can download it from
https://www.cs.unm.edu/~joel/dfield/ (You need Java
Runtime Environment to run it).
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Stable and unstable equilibrium

Let y∗ be an equilibrium point (EP).

• It is a stable equilibrium point (EP) if the solution starts at a
point close to y∗, then the solution for all future time remains
close to y∗ (e.g., pendulum).

• It is an asymptotic stable equilibrium point (EP) if the solution
starts at a point close to y∗, then the solution converges to y∗.

• It is an unstable equilibrium point (EP) if the solution starts at a
point close to y∗, then the solution moves away from y∗.
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Example: for the differential equation

dy
dx

= (y + 1)(y − 2).

Recall that the phase line is

We see that

• y = −1 is an asymptotic stable equilibrium point (EP),
• y = 2 is an unstable equilibrium point (EP).
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Another example: consider the logistic equation

dP
dt

= rP(M− P), r,M > 0.

Equilibrium points are P = 0 and P = M.

Moreover, we have
d2P
dt2

= r(M− 2P) dP
dt

.

We see that

• P′ > 0 when 0 < P < M, and P′ < 0 when P > M;
• P′′ > 0 when M− 2P and P′ have the same sign, and P′′ < 0
otherwise.
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We have the following phase line.

From the phase line, we see that

• P = 0 is an unstable equilibrium point (EP),
• P = M is an asymptotic stable equilibrium point (EP).
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Phase line Sketch
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Finding approximate solutions

Note, graphical method does not give the values of solutions.

We present a simple method, called the Euler’s method, to find
approximate values of solutions.

Specifically, we consider the differential equation

dy
dx

= g(x, y).

Assume that a starting value is given: y(x0) = y0.

We will approximate values of y(x) for future values of x (x ≥ x0).
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Main idea

The tangent line at the point (x0, y0) can be written as

T(x) = y0 +
dy
dx

(x0)(x − x0).

Using the differential equation

T(x) = y0 + g(x0, y0)(x − x0).
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Let x1 = x0 +∆x be a point near x0.

Then we can use the value y1 = T(x1) of the tangent line to
approximate the value of the exact solution y(x1).

We have
y1 = y0 + g(x0, y0)∆x.
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Similarly, the tangent line of y(x) at (x1, y(x1)) is

T(x) = y(x1) + g(x1, y(x1))(x − x1).

Let x2 = x1 +∆x be a point near x1.

Then we can use the value T(x2) to approximate the value of the
exact solution y(x2) by replacing y(x1) with y1.

y2 = y1 + g(x1, y1)∆x.

In general, we can use the formula

yn+1 = yn + g(xn, yn)∆x.
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Euler’s method

yn+1 = yn + g(xn, yn)∆x.
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Example: consider a saving account with variable interest rate.

We assume the interest rate r depends on the amount of saving S,

S(t +∆t) = S(t) + r(S)S(t)∆t.

We obtain the model
dS
dt

= r(S)S.

We take:

• the initial deposit is $10, that is, S(0) = 10;
• the variable interest rate

r(S) = 1+ 2S
100+ 100S

(it is increasing from 1% to 2%);
• ∆t = 1.
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Recall
dS
dt

= r(S)S = S 1+ 2S
100+ 100S

, S(0) = 10.

• Let S0 = 10. then

S1 = S0 +∆t(S0
1+ 2S0

100+ 100S0
) = 10.1909.

• Next, we have

S2 = S1 +∆t(S1
1+ 2S1

100+ 100S1
) = 10.3856.

So, the deposit in the second day is S(2) ≈ $10.3856.
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Application: Parameter identification

The aim is to determine unknown parameters a and b in the model

dy
dx

= af (x, y) + bg(x, y),

y(0) = α.

Motivation: parameters are needed in order to solve the model.

• In population model, we need to determine r > 0

dP
dt

= rP(M− P).

• In drug concentration model, we need to determine k > 0

dC
dt

= −kC.
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Determine unknown parameters a and b in the model

dy
dx

= af (x, y) + bg(x, y),

y(0) = α.

Idea: perform experiments and collect data.

• Given the initial condition y(0) = α, we measure y(T) = β, that
is, the response at time T .

• Repeat the experiment with different initial conditions.
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Determine unknown parameters a and b in the model

dy
dx

= af (x, y) + bg(x, y),

y(0) = α.

The solution is denoted by y(x;a,b).

Given a set of initial values α1, α2, · · · , αN, we measure the
corresponding responses β1, β2, · · · , βN at time T .

We find the parameters a and b so that S(a,b) is minimized:

S(a,b) =
N∑
i=1

(
βi − yi(T;a,b)

)2
,

where yi(T;a,b) is the response at time T with parameters a and b,
and initial condition αi.
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We will minimize

S(a,b) =
N∑
i=1

(
βi − yi(T;a,b)

)2
.

We can use the gradient method. Given initial guess a0 and b0, we
generate a sequence (ak,bk) by the following

ak+1 = ak − λk
∂S
∂a

(ak,bk),

bk+1 = bk − λk
∂S
∂b

(ak,bk),

where

∂S
∂a

= −2
N∑
i=1

(
βi − yi(T;a,b)

)∂yi
∂a

(T;a,b),

∂S
∂b

= −2
N∑
i=1

(
βi − yi(T;a,b)

)∂yi
∂b

(T;a,b).
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Next, we discuss how to compute

Ai(x;a,b) =
∂yi
∂a

(x;a,b) and Bi(x;a,b) =
∂yi
∂b

(x;a,b).

Recall that yi(x;a,b) satisfies

dyi
dx

= af (x, yi) + bg(x, yi),

yi(0) = αi.

Taking derivative with respect to a, we have

dAi
dx

= f (x, yi) + afy(x, yi)Ai + bgy(x, yi)Ai,

Ai(0) = 0.
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From the above calculations, we see that to compute

Ai(T;a,b) =
∂yi
∂a

(T;a,b).

We need the following steps:

Step��: solve the following

dAi
dx

= f (x, yi) + afy(x, yi)Ai + bgy(x, yi)Ai,

Ai(0) = 0,

to get Ai(x;a,b).
Step��: evaluate Ai at x = T .
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Similarly, to compute

Bi(T;a,b) =
∂yi
∂b

(T;a,b),

we need the following steps:

Step��: solve the following

dBi
dx

= afy(x, yi)Bi + g(x, yi) + bgy(x, yi)Bi,

Bi(0) = 0,

to get Bi(x;a,b).
Step��: evaluate Bi at x = T .
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Summary of steps

Aim: determine unknown parameters a and b in the model

dy
dx

= af (x, y) + bg(x, y),

y(0) = α.

Assume that an initial guess a0 and b0 have been chosen.

Let ak and bk be known.

Step��: find yi(x;ak,bk), i = 1, 2, · · · ,N, by solving

dyi
dx

= akf (x, yi) + bkg(x, yi),

yi(0) = αi.

Then evaluate yi(T;ak,bk).
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Step��: find Ai(x;ak,bk), i = 1, 2, · · · ,N, by solving

dAi
dx

= f (x, yi) + akfy(x, yi)Ai + bkgy(x, yi)Ai,

Ai(0) = 0,

where yi need to be determined from Step��. Then evaluate
Ai(T;ak,bk).

Step��: find Bi(x;ak,bk), i = 1, 2, · · · ,N, by solving

dBi
dx

= akfy(x, yi)Bi + g(x, yi) + bkgy(x, yi)Bi,

Bi(0) = 0,

where yi need to be determined from Step��. Then evaluate
Bi(T;ak,bk).
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Step��: update

ak+1 = ak − λk
∂S
∂a

(ak,bk),

bk+1 = bk − λk
∂S
∂b

(ak,bk),

where

∂S
∂a

(ak,bk) = −2
N∑
i=1

(
βi − yi(T;ak,bk)

)
Ai(T;ak,bk),

∂S
∂b

(ak,bk) = −2
N∑
i=1

(
βi − yi(T;ak,bk)

)
Bi(T;ak,bk).

Step��: stop when

∂S
∂a

(ak,bk) and ∂S
∂b

(ak,bk)

are small.
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A simple example

Consider finding the model parameter a for

dy
dx

= ay.

We follow the above procedure and set T = 1.

Step��: Assume ak is already known, find yi(x;ak), i = 1, 2, · · · ,N, by
solving

dyi
dx

= akyi,

yi(0) = αi.

Hence, we have yi(x;ak) = αieakx . So, yi(T;ak) = αieak .
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Step��: find Ai(x;ak), i = 1, 2, · · · ,N, by solving

dAi
dx

= yi + akAi = αieakx + akAi,

Ai(0) = 0,

and then evaluate Ai(T;ak). In general, for equations in the form

dAi
dx

= R(x) + Q(x)Ai.

We multiply the equation by e−
∫ x
0 Q(z) dz (integrating factor method),

then
d
dx

(
Aie−

∫ x
0 Q(z) dz

)
= R(x)e−

∫ x
0 Q(z) dz.

Integrate from x = 0 to x = T and recall that Ai(0;αk) = 0,

Ai(T;ak)e−
∫ T
0 Q(z) dz =

∫ T

0
R(x)e−

∫ x
0 Q(z) dz dx.
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Letting Q(x) = ak and R(x) = αieakx , we have (recall T = 1)

Ai(T;ak)e−ak =
∫ 1

0
αieakxe−akx dx.

Thus,
Ai(T;ak) = αieak .

Step��: update
ak+1 = ak − λk

∂S
∂a

(ak),

where

∂S
∂a

(ak) = −2
N∑
i=1

(
βi − yi(T;ak)

)
Ai(T;ak)

= −2
N∑
i=1

(
βi − αieak

)
αieak .
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Consider some data

αi 1 2 3
βi 3.5 6.9 10.5

Let a0 = 1.1 and λk = 0.005.

Iteration a ∂S
∂a (a) S(a)

0 1.100 −40.506 3.254
1 1.303 19.867 0.528
2 1.203 −14.452 0.343
3 1.275 9.487 0.133
4 1.228 −6.810 0.078
...

...
...

...
48 1.249 −0.000 0.007
49 1.249 0.000 0.007

Hence, we have a = 1.249.
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Disclaimer

All figures, tables, and data appearing in the slides are only used for
teaching under guidelines of Fair Use.
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