MATH3290 Mathematical Modeling 2024/2025 Answers to Assignment 1

1. Let a_n be the amount owe at the end of the n-th month. Therefore, the corresponding difference equation can be written as

$$\begin{cases} \Delta a_n = 0.015a_n - 50\\ a_0 = 500. \end{cases}$$

By the difference equation, we have

$$a_n = (a_0 - \frac{10000}{3}) \times 1.015^n + \frac{10000}{3}$$

Let $a_n = 0$. We can get $n \approx 11$. The balance will be paid off after 11 months.

- 2. (a) The model $W^1 = cg^3$ assumes that weight is directly proportional to the cube of girth while independent of length. The model $W^2 = kgl^2$ assumes that weight is directly proportional to girth and also to the square of length.
 - (b) Fitting each model to the data by the least-squares criterion, we need to minimize

$$S^{1}(c) = \sum_{i=1}^{m} (W_{i} - cg_{i}^{3})^{2}$$
$$S^{2}(k) = \sum_{i=1}^{m} (W_{i} - kg_{i}l_{i}^{2})^{2}$$

To find the minimum, we let

$$0 = \frac{dS^{1}}{dc}(c) = \sum_{i=1}^{m} (2cg_{i}^{6} - 2W_{i}g_{i}^{3})$$
$$0 = \frac{dS^{2}}{dk}(k) = \sum_{i=1}^{m} (2kg_{i}^{2}l_{i}^{4} - 2W_{i}g_{i}l_{i}^{2})$$

Then with the data, we can solve the equations and get c = 0.0276 and k = 0.0126. Consider $S^1(c)$ and $S^2(k)$,

$$S^{1}(c = 0.0276) = 54.2563 > 3.3885 = S^{2}(k = 0.0126)$$

we evaluate the model $W^2 = kgl^2$ is better.

3. (a) Formulating the system of difference equations, we have the following dynamical system:

$$\begin{array}{rcl} C_1^{n+1} &=& 0.3C_1^n + 0.3C_2^n + 0.4C_3^n \\ C_2^{n+1} &=& 0.2C_1^n + 0.5C_2^n + 0.2C_3^n \\ C_3^{n+1} &=& 0.5C_1^n + 0.2C_2^n + 0.4C_3^n \end{array}$$
 Then
$$\begin{pmatrix} C_1^{n+1} \\ C_2^{n+1} \\ C_3^{n+1} \end{pmatrix} = \begin{pmatrix} 0.3 & 0.3 & 0.4 \\ 0.2 & 0.5 & 0.2 \\ 0.5 & 0.2 & 0.4 \end{pmatrix} \begin{pmatrix} C_1^n \\ C_2^n \\ C_3^n \end{pmatrix}.$$
 Denote this equations as $C_{n+1} = AC_n.$

(b) Suppose (C_1^*, C_2^*, C_3^*) are the equilibrium values of this system, then we must have $C_1^* = C_1^{n+1} = C_1^n, C_2^* = C_2^{n+1} = C_2^n, C_3^* = C_3^{n+1} = C_3^n$. Substituting into the dynamical system yields

$$\begin{array}{rcl} 0.7C_1^* &=& 0.3C_2^* + 0.4C_3^* \\ 0.5C_2^* &=& 0.2C_1^* + 0.2C_3^* \\ 0.6C_3^* &=& 0.5C_1^* + 0.2C_2^*. \end{array}$$

There are an infinite number of solutions to this system of equations. Suppose $C_3^* = 1$, we find the dynamical system is satisfied when $C_1^* = 0.8966$, $C_2^* = 0.7586$. Keep this proportion and let C_1^* , C_2^* , C_3^* satisfy $C_1^* + C_2^* + C_3^* = 1$, we can get the equilibrium point $C^* = (0.3377, 0.2857, 0.3766)$.

To determine the stability of this equilibrium point, first we calculate the eigenvalues of A. They are $\lambda_1 = 1, \lambda_2 = -0.1, \lambda_3 = 0.3$. And the corresponding eigenvectors are

$$X_1 = \begin{pmatrix} -0.5812\\ -0.4918\\ -0.6483 \end{pmatrix}, X_2 = \begin{pmatrix} -0.7071\\ 0.0000\\ 0.7071 \end{pmatrix}, X_3 = \begin{pmatrix} 0.1961\\ -0.7845\\ 0.5883 \end{pmatrix}.$$

Since X_1, X_2, X_3 are linearly independent, then C_0 can be written as

$$C_0 = \alpha_1 X_1 + \alpha_2 X_2 + \alpha_3 X_3.$$

Then

$$C_n = A^n C_0 = A^n (\alpha_1 X_1 + \alpha_2 X_2 + \alpha_3 X_3)$$

= $A^{n-1} (\alpha_1 \lambda_1 X_1 + \alpha_2 \lambda_2 X_2 + \alpha_3 \lambda_3 X_3)$
...
= $\alpha_1 \lambda_1^n X_1 + \alpha_2 \lambda_2^n X_2 + \alpha_3 \lambda_3^n X_3.$

Since $|\lambda_2| < 1, |\lambda_3| < 1$, then

$$\lim_{n \to +\infty} \lambda_2^n = 0, \lim_{n \to +\infty} \lambda_3^n = 0.$$

Hence,

$$\lim_{n \to +\infty} C_n = \alpha_1 X_1.$$

So this equilibrium point is stable and independent of the initial condition.

(c) Use the equations in (a), it's easy to compute C_1^5, C_2^5, C_3^5 for each case. The tendency in each case can be seen in Figure 1-3. It's easy to see that the long term behaviour does not sensitive to the initial condition.

Percentage	C_{1}^{5}	C_{2}^{5}	C_{3}^{5}
Case A	0.3378	0.2850	0.3771
Case B	0.3375	0.2862	0.3762
Case C	0.3377	0.2855	0.3768

Table 1: Data set for Problem 3.

Figure 1: Case A of Problem 3(c)

Figure 2: Case B of Problem 3(c)

Figure 3: Case C of Problem 3(c)