Bernoulli n.v. and Binomial n.v. \$ 4.6 (1) Bernoulli r.v. Consider a random experiment, whose outcome can be classified as either a success, or a failure. Define $X = \begin{cases} 1 & \text{if the outcome is a success,} \\ 0 & \text{if the outcome is a failure.} \end{cases}$ Let $p = P\{X=1\}$ then $P\{X=0\} = 1-p$. It has a prob. mass function = $\{p(i) = p, p(i) = 1 - p,$ We call X a Bernoulli n.v. with parameter p. • E[X] = P $E[\chi^2] = p$ $V(x) = E[x^{-}] - E[x]^{-} = P - P^{-}$

• Prob. mass function for a general Binomial r.v. with parameters
For
$$\hat{v}=0, i, ..., n$$
, we have (n, p)
 $P\{X=\hat{v}\}=\binom{n}{i}\cdot p^{i}(i-p)^{n-i}$
Boson: The prob. of a special sequence of outcomes containing \hat{v} successly
and $(n-\hat{v})$ failures, is equal to $p^{i}(i-p)^{n-1}$
But there are in total $\binom{n}{i}$ such sequences, so
 $p\{X=\hat{v}\}=\binom{n}{i}p^{\hat{i}}(i-p)^{n-\hat{i}}$.
 $\binom{n}{k}=\hat{v}\}=\binom{n}{i}p^{\hat{i}}(i-p)^{n-\hat{i}}$.
 $\binom{n}{k}=\hat{v}\}=\binom{n}{i}p^{\hat{i}}(1-p)^{n-\hat{i}}$.
 $\binom{n}{k}=\hat{v}\}=\binom{n}{i}p^{\hat{i}}(1-p)^{n-\hat{i}}$.
 $\binom{n}{k}=\hat{v}\}=\binom{n}{i}p^{\hat{i}}(1-p)^{n-\hat{i}}$.
 $\binom{n}{k}=\hat{v}\}=\binom{n}{i}p^{\hat{i}}(1-p)^{n-\hat{i}}$.
 $\binom{n}{k}=\hat{v}\}=\frac{n}{i=0}(\binom{n}{i})x^{\hat{i}}y^{n-\hat{i}}$ (Binomial formula)
 $Prop.$ Let X be a Binomial r.v. with parameters (n, p) .
Let $R \ge 1$ be an integer. Then
 $E[X^{R}] = np \cdot E[(Y+1)^{R+1}]$.
where Y is a Binomial r.v. with parameters $(n-i, p)$.

Pf. By def, $E[X^{k}] = \sum_{i=0}^{n} i^{k} \binom{n}{i} p^{i} (i-p)^{n-i}$ $= \sum_{i=1}^{n} \frac{k}{2} \binom{n}{i} p^{i} (1-p)^{n-i}$ $\left(\text{Using} \quad i\left(\begin{array}{c} n \\ i \end{array} \right) = n\left(\begin{array}{c} n-i \\ i-i \end{array} \right) \right)$ $= \sum_{i=1}^{n} n \cdot i^{k-i} \binom{n-i}{i-i} p^{i} (l-p)^{n-i}$ $= np \sum_{i=1}^{n} \frac{k-1}{2} \binom{n-1}{2} p^{i-1} (1-p)^{n-i}$ Lettry j=i-1 $= np \sum_{j=0}^{n-1} (j+1)^{k-1} {\binom{n-1}{j}} p^{j} (1-p)^{n-1-j}$ $= np \cdot E[(Y+I)^{k-1}]$ 17

Cor. $E[X] = nP \cdot E[(Y+1)^{\circ}] = nP$. $E[\chi^{2}] = nP \cdot E[(\chi+1)]$ = np(E[Y]+I]= np((n-1)p+1) $Var(X) = E[X^2] - E[X]^2$ $= np((n-1)p+1) - (np)^{\star}$ $= n(p-p^{2}).$

§ 4.7 Poisson r.U. Def. Let $\lambda > 0$. A r.u. X taking values in $\{0, 1, 2, \dots\}$ is said to be a Poisson r.U. with parameter & if $P\{X=i\} = e^{-\lambda} \cdot \frac{\lambda^{i}}{i},$ 2=0,1,... Remark, $e^{\lambda} = \sum_{i=0}^{\infty} \frac{\lambda^{i}}{i!}$. Hence $\sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} = 1$. A poisson r.v. Can be Used to approximate a binomial r.v with parameters (n,p) when n is large, p is small so that np is of moderate size,

Let X be a binomial ru with parameters (n, p). Let $np = \lambda$. For k=0, 1, ..., $P\{X=k\} = \binom{n}{k} p^{k} (1-p)^{n-k}$ $= \frac{n(n-1)\cdots(n-k+1)}{k!} \cdot \left(\frac{\lambda}{n}\right)^{k} \cdot \left(1-\frac{\lambda}{n}\right)^{n-k}$ $= \frac{1 \cdot \left(1 - \frac{1}{n}\right) \left(1 - \frac{\lambda}{n}\right) \cdots \left(1 - \frac{k - 1}{n}\right)}{k!} \lambda^{k} \cdot \left(1 - \frac{\lambda}{n}\right)^{n}$ $\approx \frac{1}{k!} \lambda^{k} e^{-\lambda} \left(l - \frac{\lambda}{n} \right)^{-k}$ 7/

Expected value and variance of Poisson r.v. X ---- Poisson r.v. with parameter 2. $P\{X=k\} = e^{-\lambda} \cdot \frac{\lambda^k}{k}, \quad k=0, 1, \dots$ $E[X] = \sum_{k=0}^{\infty} k \cdot e^{-\lambda} \frac{\lambda^{k}}{k!}$ $= \sum_{k=1}^{\infty} k \cdot e^{-\lambda} \cdot \frac{\lambda k}{k!}$ $= \sum_{k=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{k}}{(k-1)!}$ Letting $j = k^{-1}$ $\sum_{j=0}^{\infty} e^{-\lambda} \cdot \lambda \cdot \frac{\lambda^{j}}{j!}$ $= \lambda \cdot \sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{j}}{\lambda^{j}}$ $= \lambda$

 $E[\chi^{2}] = \sum_{k=0}^{\infty} k^{2} \cdot e^{-\lambda} \cdot \frac{\lambda^{k}}{k!}$ $= \sum_{k=1}^{\infty} k \cdot e^{-\lambda} \cdot \frac{\lambda^{k}}{(k-1)!}$ $= \sum_{k=1}^{\infty} (k-1) e^{-\lambda} \frac{\lambda^{k}}{(k-1)!} + \sum_{k=1}^{\infty} e^{-\lambda} \frac{\lambda^{k}}{(k-1)!}$ $= \sum_{k=2}^{\infty} e^{-\lambda} \frac{\lambda^{k}}{(k-2)!} + \sum_{k=1}^{\infty} e^{-\lambda} \frac{\lambda^{k}}{(k-1)!}$ $= \lambda^2 + \lambda$ So $V_{ar}(X) = E[X^{\dagger}] - E[X]^{2}$ $= \lambda^2 + \lambda - \lambda^2$ $=\lambda$

§ 4.9 Expectation of sums of cliscrete r.u.'s.
Let X₁, X₂, ..., X_n be discrete r.u.'s on the
same sample space S.
Prop 1.
$$E[X_1 + \dots + X_n] = \sum_{k=1}^{n} E[X_k]$$
.
We will prove the above result under an additional
assumption that S is finite or countably infinite.
(The general case is referred to Theoretical Ever 4.36
in the text book).
Lem 2. Assume that S is finite or countably infinite.
Set $p(s) = P[fs]$ for $s \in S$.
Then for any r.u. X on S, we have
 $E[X] = \sum_{s \in S} X(s) p(s)$.

Pf. Suppose the distinct values of X are x_i , $i \ge 1$. Let $S_i = \{s \in S : X(s) = x_i \}$. Then S1, S1, ..., are a partition of S. By definition, $E[X] = \sum_{i} x_{i} P\{X = x_{i}\}$ $= \sum_{i} x_{i} P(S_{i})$ $= \sum_{i} x_{i} \sum_{s \in S_{i}} p(s)$ $= \sum_{i} \sum_{s \in S_{i}} x_{i} P(s)$ $= \sum_{i} \sum_{s \in S_{i}} \chi(s) p(s)$

 $= \sum_{s \in S} \chi(s) p(s)$ $(because S = \bigcup_{i} S_{i})$ with the Union being disjoint Pf of Prop 1. By Lem 2, $E[X_1 + \dots + X_n] = \sum_{s \in S} (X_i^{(s)} + \dots + X_n^{(s)}) p(s)$ $= \left(\sum_{s \in S} \chi_{s}(s) p(s)\right) + \dots + \left(\sum_{s \in S} \chi_{n}(s) p(s)\right)$ $= E[X_1] + \dots + E[X_n]$

§ 49. Cumulative distribution function.
Def. Let X be a discrete r.v. Defins

$$F_X(b) = P\{X \le b\}$$
, $b \in \mathbb{R}$.
We call F_X the cumulative distribution function
 $(CDF) \circ S X$. We also write $F(b) = F_X(b)$.
Prop 3. (1) F is non-decreasing, that is
 $F(a) \le F(b) = i$.
 $b = +\infty$
(3) $\lim_{b \to -\infty} F(b) = 0$.
 $b = -\infty$
(4) F is right continuous, i.e.
 $\lim_{b \to +\infty} F(b_1) = F(b)$.
 $\lim_{b \to +\infty} F(b_1) = F(b)$.
 $\lim_{b \to +\infty} F(b_1) = F(b)$.
 $\lim_{b \to +\infty} F(b_1) = F(b)$.

The prop. is based on the Continuity property of probability
Reall that if
$$E_n \neq E$$
, then $\lim P(E_n) = P(E)$
(i.e. $E_{n+1} \supseteq E_n$, $E = \bigcup_{n=1}^{\infty} E_n$)
if $E_n \lor E$ ($E_{n+1} \subseteq E_n$, $E = \bigcap_{n=1}^{\infty} E_n$)
then $P(E_n) \Rightarrow P(E)$ as $n \Rightarrow \infty$.
Pf of Prop 3.
(1) Since if $a < b$, it follows that
 $\{X \le a\} \subset \{X \le b\}$.
So $F(a) \le F(b)$.
(2) If $b_n \neq \infty$,
then $\{X \le b_n\} \neq \{X < \infty\} = S$
So $F(b_n) \Rightarrow 1$ (by the continuity property
of property

(3) If $bn \sqrt{-\infty}$, then $\{X \leq b_n\} \quad \forall \quad \{X = -\infty\} = \emptyset$ So $F(b_n) \rightarrow 0$. (4) If bn Vb, then $\{X \leq bn\} \setminus \{X \leq b\}.$ So $\lim_{n \to \infty} F(b_n) = F(b)$. Thus Fis right continuous. <u>Remark</u>: . In general, F is not left continuous

 $\frac{Prop 4}{P} \quad P\{X=b\} = F(b) - F(b-)$ Pf. Let bn / b with Bn < b. Then $\{X \leq b_n\} / \{X < b\}$. So $P\{X \le bn\} \rightarrow P\{X \le b\}$ Thus $P\{X < b\} = \lim_{n \to \infty} F(b_n) = F(b_n)$. It follows that $P\{X=b\} = P\{X \le b\} - P\{X \le b\}$ = F(b) - F(b-).77