Chop 4. Random Variables.
§41 Introduction to random Variables.
Def. For a random experiment, a random Variable (T.V)
X is a real-valued function defined on the
Sample space S. That is,
X: S
$$\rightarrow$$
 IR is a function.
Example 1. Flip 3 fair coins. Let X be the
humber of the heads that appear.
X = #{ heads that appear}
Eg. if the outcome is (T, H, T), then X=1
if the outcome is (H, T, H), then X=2.

$$p(a) = P\{X=a\}$$

$$= P\{w \in S : X(w) = a\},$$

$$\forall a \in IR.$$
Example 4: $X = \#\{\text{ heads appear in rolling} \\ 3 \text{ fair coins}\}$

$$\{X=o\} = \{(T, T, T)\},$$

$$\{X=i\} = \{(H, T, T), (T, H, T), (T, T, H)\},$$

$$\{X=i\} = \{(H, H, T), (H, T, H), (T, H, H)\},$$

$$\{X=i\} = \{(H, H, H)\},$$
So $P(o) = \frac{1}{8}, P(i) = \frac{3}{8}, P(2) = \frac{3}{8}, P(3) = \frac{1}{8}$
and $P(a) = o$ for all $a \notin \{0, 1, 2, 3\},$

§ 4.3 Expected value.
Let X be a discrete r.v.
Let
$$p(x) = P\{X=x\}$$
 be the prob. mass function
of X.
Def. The expected value of X is defined by
 $E[X] = \sum_{x: p(x)>v} x \cdot P(x)$
we some times also call $E[X]$ the mean of X.
Hence $E[X]$ is a weighted average of
the possible values of X.
Hence $E[X]$ is a weighted average of
the possible values of X.
Example : $X = \#\{$ heads appear in flipping 3
fair coins f
 $p(v) = \frac{1}{8}$, $p(z) = \frac{3}{8}$, $p(z) = \frac{3}{8}$, $p(z) = \frac{1}{8}$

Hence by definition, $E[X] = O \times P(0) + (\times P(1) + 2 \times P(2) + 3 \times P(3))$ $= 0 \times \frac{1}{8} + 1 \times \frac{3}{8} + 2 \times \frac{3}{8} + 3 \times \frac{1}{8}$ $=\frac{3+6+3}{8}=\frac{3}{2}$.

§4.4. Expected value of a function of a r.u. Let X: S→IR be a discrete r.v. Let g: IR→IR be a function. Then g(X) is a function from S to R, so it is a new r.v. Q: How can we compute E[g(X)]? Remark: By def, if Y1, Y2, ..., are the possible Values of g(X), then $E[g(X)] = \sum_{i} Y_{i} P\{g(X) = Y_{i}\}$

Below we give a short-ant formula for E[g(X)]
Prop. E[g(X)] =
$$\sum_{i}^{n} g(x_i) \cdot P(x_i)$$
,
where x_i, x_k, \cdots , are all the possible values of X.
Pf. Grouping all $g(x_i)$ which take the same
Value, gives
 $\sum_{i}^{n} g(x_i) p(x_i)$
 $= \sum_{i}^{n} (\sum_{j=1}^{n} g(x_i) p(x_j))$
 $= \sum_{j}^{n} (\sum_{j=1}^{n} g(x_j) = y_j$
 $= \sum_{j}^{n} (\sum_{j=1}^{n} g(x_j) = y_j$
 $= \sum_{j}^{n} y_j P(g(X) = y_j)$ (*)

To see (*), Notice that $\{g(X) = y_i\} = \bigcup_{i:g(x_i) = y_i} \{X = x_i\}$ (the Union being disjoint) Hence $P\{g(\chi) = Y_j\} = \sum_{i:g(\chi_i) = Y_j} P\{\chi = \chi_i\}$ $= \sum_{i \in g(x_i) = y_j} P(x_i)$ Corollary: E[aX+b] = a E[X] + bV a, b E IR and X is a discrete r.v Pf. Let g: IR→IR be defined by g(x) = ax+b. $LHS = E[g(X)] = \sum_{X: p(X) > D} (a_X+b) p(X)$ $= \sum_{\substack{X = p(x) > 0}} a \times p(x) + b p(x)$ $= \alpha \sum_{X: p(x)>0} x p(x) + \frac{b \sum_{X: p(x)>0} p(x)}{x \cdot p(x)>0}$ $= a \cdot E[x] + b = RHS.$ \Box

Def. Let X be a discrete r.u. For each non-negative integer n, we call E[X"] the n-th moment of X. \$45 Vaniance. Def. Let X be a discrete r.v. Set $Var(X) = E[(X-\mu)^2]$ where $\mu = E[X]$. we call Var(X) the Vaniance of X. It describes how far X is spread out from its mean.

Prop. $Var(X) = E[X^2] - \mu^2$. Pf. By definition $V_{ar}(X) = E[(X-\mu)^{2}]$ $= \sum_{\substack{x \in p(x) > b}} (x - \mu)^2 p(x)$ $= \sum_{\substack{\chi : p(x) > 0}} \chi^2 p(x) - 2\mu \sum_{\substack{\chi : p(x) > 0}} \chi p(x)$ $+\mu^{2}\sum_{x\in p(x)>0}p(x)$ $= E[X^{2}] - 2\mu^{2} + \mu^{2}$ $= E[\chi^2] - \mu^2$