Introductory Probability Chapter 2 Axioms of probability 1. Introduction · Probability is a math area dealing with random behaviors. · It has a history of more than 300 years in the study. · It came from gambling in the early stage, and gamings of Chance. 2. Random experiments, outcomes, sample space, events. Random experiments / outcomes. Example: 1) Toss a coin to get a head or a tail. ② Roll a dice to see the number of the top face. 3 Measure the Reight of a randomly chosen student in the Campus. Def. (Sample space). The set of all outcomes of an experiment is called the sample space of the experiment.

Usually, We use S to denote the sample space.
Example (a) Toss a Coin once.

$$S = \{H, T\}$$
.
Toss a Coin twice.
 $S = \{H, H, T, TH, TT\}$
(a) Roll a dice once
 $S = \{I, 2, 3, 4, 5, 6\}$.
Roll a dice 3 times.
 $S = \{(I, j, k) : 0, j, k \in \{I, 2, 3, 4, 5, 6\}\}$.
(b) height of a randomly chosen student (in meters)
 $S = \{o < x < w \} = (o, \infty)$
Def (event) Let S be the sample space of an experiment.
Every subset E of S is called an event.
If an outcome of the experiment is contained in
the event E, then we say the has occured.

· Basic operations on events. union: EUF Intersection: ENF $Complement E^{c} = S \setminus E$ ϕ Null event. ٠ We say two events E, F are mutually exclusive if $E \cap F = \phi$. Venn chiagram. • S E ENF E^c S Е G $(E \cap F) \cup (F \cap G)$

• Laws.
(i)
$$E \cup F = F \cup E$$
, $E \cap F = F \cap E$ commutative laws
 $E \cap (F \cup G) = (E \cap F) \cup (E \cap G)$ distributive laws
 $E \cup (F \cup G) = (E \cup F) \cup G$ associative laws
 $E \cap (F \cap G) = (E \cap F) \cap G$.
(ii) De Morgan's laws
 $\left(\bigcup_{n=1}^{\infty} E_n \right)^c = \bigcap_{n=1}^{\infty} E_n^c$
 $\left(\bigcup_{n=1}^{\infty} E_n \right)^c = \bigcup_{n=1}^{\infty} E_n^c$
 $P f$. Let us prove the first equality in (ii)
 $x \in (\bigcup_{n=1}^{\infty} E_n)^c$
 $\Leftrightarrow x \in S, x \notin \bigcup_{n=1}^{\infty} E_n$
 $\Leftrightarrow x \in S, x \notin E_n$ for $n=1, 2, \cdots$
 $\Leftrightarrow x \in \sum_{n=1}^{\infty} E_n^c$
 $Hena = (\bigcup_{n=1}^{\infty} E_n)^c = \bigcap_{n=1}^{\infty} E_n^c$.

§2.3. Axioms of probability. Q: How can we define the prob. of an event? An intuitive approach : repeat the random experiment n times. let n(E) be the times that an event E occurs Let $p(E) = \lim_{h \to \infty} \frac{h(E)}{h}$.

of events which are mutually exclusive, then $p(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} p(E_n)$ (Countable additivity of prob.) \$ 2.4. Some properties of probability. Prop 1. $P(\emptyset) = 0$. Pf. Let $E_1 = S$, and $E_n = \varphi$ for $n=2, 3, \cdots$. Then EI, Ez, ..., are mutually exclusive. By Axiom 3 $P\left(\begin{array}{c} \bigcup_{n=1}^{\infty} E_n \end{array}\right) = \sum_{n=1}^{\infty} P(E_n)$ = $P(E_1) + P(E_2) + \cdots$ $= P(S) + P(\phi) + P(\phi) + \cdots$ LHS ≤ 1 , RHS ≤ 1 only occurs when $P(\phi) = 0$.

Prop 2. (finite additivity) Let EI, Ez, ..., En be mutually exclusive events. Then $P\left(\bigcup_{k=1}^{n} E_{k}\right) = \sum_{k=1}^{n} P(E_{k})$ Pf. Define $E_j = \phi$ for j = n+1, n+2, ...By Axiom 3, $P\left(\begin{array}{c} U\\ R=1\\ R=1\end{array}\right) = \sum_{k=1}^{\infty} P(E_k)$ $= \sum_{k=1}^{n} \beta(E_{k}) + \sum_{k=n+1}^{\infty} \beta(E_{k})$ $= \sum_{k=1}^{n} P(E_k) \quad (Sind P(E_{n+1}))$ $= p(\tilde{E}_{n+2}) = \cdots = o$ by Prop 1) Now the proposition follows from $\bigcup_{k=1}^{n} E_{k} = \bigcup_{k=1}^{\infty} E_{k} .$

Prop 3. $P(E^{c}) = I - P(E)$. PF. Notice that $S = E' \cup E \cup \phi \cup \phi \cdots$ By Axiom 3 and Prop 1, Axiom 2 $1 = P(S) = P(E^{c}) + P(E)$. Prop 4 Let E, F be two events. Then $P(E \cup F) = P(E) + P(F) - P(E \cap F)$ $Pf. E \cup F = E \cup (F \setminus E)$ Since $E \cap (F \setminus E) = \emptyset$, so by Axiom 3, $P(E \cup F) = P(E) + P(F \setminus E)$.

Now we consider P(F(E). Notice that $F = (F \setminus E) \cup (E \cap F)$ red ↔ ENF blue +> F/E. Using Axiom 3 again, $P(F) = P(F \setminus E) + P(E \cap F)$ hence $P(F \in P(F) - P(E \cap F))$ Plugging @ into [] yields the desired identity. M.

Prop. 5. Suppose FCE. Then $P(F) \leq P(E)$ S PF. Since FCE, $E = F \cup (E \setminus F)$ (disjoint) By Prop 2, P(E) = P(F) + P(E(F))Since P(E(F) >0 by Axiom 1, it follows that $P(E) \ge P(F)$ \square

Prop 6. Let
$$E_{i}, E_{2}, \cdots$$
, be a sequence of events.
Then
 $P(\bigcup_{n=1}^{\infty} E_{n}) \leq \sum_{n=1}^{\infty} P(E_{n})$.
(Countable sub-additivity of prob.)
Proof. First we write $\bigcup_{n=1}^{\infty} E_{n}$ as the
Union of some digjoint events. To do so,
write
 $F_{1} = E_{1}$
 $F_{2} = E_{2} \setminus E_{1}$
 $F_{3} = E_{3} \setminus (E_{1} \cup E_{2})$
....
 $F_{n} = E_{n} \setminus (\bigcup_{i=1}^{n-1} E_{i})$,
....

Then the following properties hold: (1) $F_n \subset E_n$, $n=1, \cdots$, (2) F. F. ... are mutually exclusive. $(3) \bigcup_{i=1}^{n} F_i = \bigcup_{i=1}^{n} E_i$ $(4) \bigcup_{i=1}^{\infty} F_i = \bigcup_{i=1}^{\infty} E_i$ (1) and (2) are easy to see. Below we only prove (4). The proof of (3) is similar. To show (4) recall that $F_i \subset E_i$ so $\bigcup_{i=1}^{\infty} F_i \subset \bigcup_{i=1}^{\infty} E_i.$ To prove UF; DUE; let x & ÜEi. Then x & Ei for some i