THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 3030 Abstract Algebra 2024-25 Tutorial 3 solutions 26th September 2024

- Please send an email to echlam@math.cuhk.edu.hk if you have any questions.
- 1. Suppose $f : G \to G'$ with G cyclic, let $g \in G$ be a generator, then any $g' \in G'$ can be written as $g' = f(g^k) = f(g)^k$ for some k, since f(G) = G', we have G' is cyclic. Likewise if G is abelian, for any $c, d \in G'$, there are $a, b \in G$ so that f(a) = c and f(b) = d. Then cd = f(a)f(b) = f(ab) = f(ba) = f(b)f(a) = dc.
- 2. Since $H \cap N$ is a subgroup of H, we know $a(H \cap N)a^{-1} = H \cap aNa^{-1} = H \cap N$ for any $a \in H$.
- 3. Let $G = GL(2, \mathbb{R})$ be the set of 2×2 invertible matrices with coefficients in \mathbb{R} , then $X = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ generates a subgroup H isomorphic to \mathbb{Z} since $X^k = \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$. Now $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ are conjugate to each other by $\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$. Setting $A = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$, we have $AHA^{-1} \leq H$ is a proper subgroup since $AMA^{-1} = X$ implies M does not have integer coefficients, so cannot possibly lie in H.
- 4. Let $m \in M$ and $n \in N$, then by normality of N, $mnm^{-1}n^{-1} = (mnm^{-1})n^{-1} \in N$, and by normality of M, $mnm^{-1}n^{-1} = m(nm^{-1}n^{-1}) \in M$. So $mnm^{-1}n^{-1} \in M \cap N = \{e\}$. So mn = nm.
- 5. Let (a_1, a_2) be in the center of $G_1 \times G_2$, then for any $(b_1, b_2) \in G_1 \times G_2$, then $(a_1, a_2)(b_1, b_2) = (b_1, b_2)(a_1, a_2)$ implies that $a_1b_1 = b_1a_1$ and $a_2b_2 = b_2a_2$. Since b_1, b_2 can be arbitrary elements in G_1, G_2 respectively, this implies $a_1 \in Z_1$ and $a_2 \in Z_2$. The converse is clear.
- 6. (a) This statement is true in general for S_n. To see why x̃ = σxσ⁻¹ has the same cycle type as x, think of elements of S_n as a bijective functions on {1,...,n}. Writing x(i) = j, we have x̃(σ(i)) = σ(x(i)) = σ(j). So up to relabelling the elements i → σ(i), x̃ and x are the same cycle structure.
 - (b) i. By direct counting using combinatorics, there are 24!/4 = 6 many distinct 4-cycles of the form like (1324).
 - ii. There are 24!/3 = 8 many distinct 3-cycles of form like (241).
 - iii. There are $C_2^4/2 = 3$ many distinct (2, 2)-cycles of form like (14)(23).
 - iv. And there are $C_2^4 = 6$ many distinct 2-cycles of form like (12).
 - v. Finally there is one 1-cycle *e*.
 - (c) If $N \leq S_4$ is a normal subgroup, then $\sigma x \sigma^{-1} \in N$ for any $x \in N$ and $\sigma \in S_4$. By the same argument in part (a), if $x, \tilde{x} \in S_4$ are of the same cycle type, then we can find σ so that $\sigma x \sigma^{-1} = \tilde{x}$. Therefore, in order for N to be normal, if we have $x \in N$, it would imply that N contains all elements of the same cycle type as x. At the same

time, by Lagrange's theorem, N has order a divisor of $|S_4| = 24$. By examining part (b), we see that the only possible nontrivial proper normal subgroup of S_4 are union of cases (ii), (iii) and (v), or union of cases (iii) and (v). In the first case, it is a subgroup of order 12, hence its index is 2, so it must be normal. In fact, this group is the alternating group A_4 consisting of all even elements of S_4 . In the second case, one can check that it is a subgroup, and hence must be a normal subgroup.

(Warning: A priori, we don't know whether taking an arbitrary union of all elements in the same cycle types would form a subgroup. It is necessary to check that it is close under group product.)

7. First of all, we know $x^{[G:N]} \in N$ for any $x \in G$. This is due to Lagrange's theorem: the coset $xN \in G/N$ has order dividing [G:N] = |G/N|, therefore $(xN)^{[G:N]} = (x^{[G:H]}H) = H$, i.e. $x^{[G:H]} \in H$. Now the coprime condition implies that there are integers a, b so that a[G:N] + b ord N = 1, therefore

$$x^{1} = x^{a [G:N] + b \operatorname{ord} N} = (x^{[G:n]})^{a} (x^{\operatorname{ord} N})^{b} = (x^{[G:N]})^{a} \in N.$$

- Suppose C is a cyclic subgroup that is normal in G, then any subgroup C' ≤ C is also a cyclic group. In fact, following from the structures of cyclic groups, C' is the unique subgroup of C with that particular order. Therefore for any g ∈ G, gC'g⁻¹ ≤ gCg⁻¹ = C must be equal to C', as gC'g⁻¹ has the same cardinality as C'.
- 9. G' is generated by elements of the form $ABA^{-1}B^{-1}$ for matrices $A, B \in G$, note that $det(ABA^{-1}B^{-1}) = 1$, and hence every element in G' must lie in $SL(2, \mathbb{R})$.
- 10. To show that *H* is normal, note that $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}^{-1} = \begin{pmatrix} \frac{1}{a} & \frac{-b}{ac} \\ 0 & \frac{1}{c} \end{pmatrix}$, so it suffices to check that $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{a} & \frac{-b}{ac} \\ 0 & \frac{1}{c} \end{pmatrix} \in H$. This is clear since the top left entry is given by $a \cdot 1 \cdot \frac{1}{a} = 1$ and the bottom right entry is given by $c \cdot 1 \cdot \frac{1}{c} = 1$.

Now consider the commutator subgroup of G, by the same argument as above, if we are given $A, B \in G$, then $ABA^{-1}B^{-1}$ has top left and bottom right entries being 1, hence the commutator subgroup is contained in H. By proposition in lecture 2, we conclude that G/H is abelian.

To determine the group structure, consider $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & ax+b \\ 0 & c \end{pmatrix}$. Therefore in any coset $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} H$, by taking $x = -\frac{b}{a}$, we have a distinguished representative $\begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix}$. Hence $G/H = \left\{ \begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix} : a \neq 0, c \neq 0 \right\} \cong (\mathbb{R}^{\times})^2$.

11. There is relatively simpler proof if you are comfortable with universal properties. Let $F_n = F(a_1, ..., a_n)$ be the free groups on n letters and F'_n be the derived subgroup of F_n , then $F_n^{ab} := F_n/F'_n$ is called the abelianization of F_n . It satisfies the universal property that whenever we are given homomorphism $f : F_n \to G$ to an abelian group G, it factors into

Now let $\mathbb{Z}^{\oplus n}$ be the free abelian group generated by $a_1, ..., a_n$, it satisfies the universal property that given any set function $g : \{a_1, ..., a_n\} \to G$ for abelian group G, there exists a unique homomorphism $f : \mathbb{Z}^{\oplus n} \to G$ extending g. It suffices to prove that F_n^{ab} also satisfies the same universal property. Given $g : \{a_1, ..., a_n\} \to G$ as before, we can first obtain $f : F_n \to G$ by universal property of free group. Since G is abelian, it automatically factors through F_n^{ab} . With the property that $f'(a_iF'_n) = f(a_i) := g(a_i)$ for coset $a_iF'_n \in F_n^{ab}$. In particular, since F_n^{ab} and $\mathbb{Z}^{\oplus n}$ are both abelian, we obtain maps $F_n^{ab} \to \mathbb{Z}^{\oplus n}$ and $\mathbb{Z}^{\oplus n} \to F_n^{ab}$ which are inverse to each other. This implies that $F_n^{ab} \cong \mathbb{Z}^{\oplus n}$.

Alternatively, one can prove this statement by defining $F_n \to \mathbb{Z}^{\oplus n}$ by sending generators a_i to $e_i = (0, ..., 1, ..., 0)$ and prove that the kernel of this homomorphism is the same as the commutator subgroup.