THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 3030 Abstract Algebra 2024-25 Tutorial 2 19th September 2024

- The tutorial solutions are written for reference and proofs will be sketched briefly. You should try to fill in the details as an exercise. Please send an email to echlam@math.cuhk.edu.hk if you have any further questions.
- Recall that any homomorphism from F_n to an arbitrary group G is uniquely determined by the image of the n generators. If G is a finite group of order |G| > 1, then Hom(F_n, G) ≅ Hom({1, 2, ..., n}, G) ≅ Gⁿ, which has cardinality |G|ⁿ. In particular if m ≠ n, the cardinalities of the sets of homomorphisms from F_n to G are not the same, so they are not isomorphic.
- 2. By Nielsen-Schreier theorem, $\langle x, y \rangle$ is a subgroup that is free. This is also abelian by assumption on x, y, therefore $\langle x, y \rangle \cong \mathbb{Z}$, i.e. there exists some c such that $\langle c \rangle = \langle x, y \rangle$, so that $x = c^i$ and $y = c^j$.

(Let me stress once again that this is outside of the syllabus and only serves as a demonstration of the powerful theorem.)

3. (a) Suppose F₂ = F(a, b), let x_i = aⁱbⁱ for any 1 ≤ i ≤ m, then we can show that ⟨x₁,...,x_m⟩ ≅ F_m for any m ∈ Z_{>0}. Write F_m = F({a₁,...,a_m}), then as discussed before there is a homomorphism φ : F_m → ⟨x₁,...,x_m⟩ by sending a_i ↦ x_i. This is by definition surjective, since ⟨x₁,...,x_m⟩ contains words in x_i's which is the image of the corresponding words in a_i's. So it suffices to prove that φ is injective.

Injectivity amounts to showning that there are no relations among the x_i 's. In other words, if $w \in F_m$ is a word in a_i 's so that $\varphi(w)$ reduces to the empty word in F(a, b), then the unreduced word $\varphi(w)$, expressed in terms of a, b would contain subwords like $b^k b^{-k}$. This is because the positive powers of x_i has b's at the end and the negative powers of x_i has b's in front. So in order for them to cancel out, we must have x_k and x_k^{-1} next to each other in $\varphi(w)$. So by an induction argument of the length of w, the word w itself must originally reduce to the empty word. This completes the proof.

Note that this shows that there is in fact $F(\mathbb{Z}_{>0}) \leq F_2$ where $F(\mathbb{Z}_{>0})$ is a free group of countably many generators.

- (b) Denote [G] the underlying set of a group, then F([G]) is a free group whose generators are given by elements of G without relations, we have a natural homomorphism φ : F([G]) → G by sending g → g. This is clearly surjective and by first isomorphism theorem G ≅ F([G])/ker φ.
- (c) We can look for normal subgroups by considering kernels of homomorphisms. For example, consider $F(a, b) \to \mathbb{Z} \times \mathbb{Z}$ by $a \mapsto (1, 0)$ and $b \mapsto (0, 1)$. Then the kernel of this homomorphism is given by the set of elements w so that we have same numbers of a and a^{-1} , b and b^{-1} appearing in the word w.

Inspired by the above, we see that it is not difficult to describe subgroups by specifying the degrees on the words. For example,

$$H = \{ w = a^{i_1} b^{j_1} \cdots a^{i_n} b^{j_n} : i_1 + \dots + i_n \text{ is divisible by } 2 \}$$

gives another example of a normal subgroup, because conjugating a word gwg^{-1} would not change the degree. Alternatively, you can also see that it is normal because it has index [F(a, b) : H] = 2. In this example, this corresponds to kernel of homomorphism $F(a, b) \to \mathbb{Z}_2$ by $a \mapsto 1$ and $b \mapsto 0$.

On the other hand, non-normal subgroups are easy to write down. For example, the subgroup given in part (a) for m = 1, i.e. the subgroup generated by $ab \in F(a, b)$. Clearly this group is isomorphic to \mathbb{Z} , and every element is given by $(ab)^k$ for some $k \in \mathbb{Z}$. So $a^{-1}aba = ba$ cannot be in the subgroup. Similarly $\langle a \rangle \leq F(a, b)$ is not normal.

- 4. Let $a \in G$, since $x \mapsto ax$ defines a set bijection from $G \to G$, we have $aNa^{-1} = \bigcap_{g \in G} agHg^{-1}a^{-1} = \bigcap_{ag=g' \in G} g'Hg'^{-1} = N$.
- 5. If $[G:H] < \infty$, there exists finitely many left coset space aH. Suppose aH = bH, then there is some h so that a = bh, so $aHa^{-1} = bhHh^{-1}b^{-1} = bHb^{-1}$. Therefore there are at most as many subgroup of the form gHg^{-1} as there are cosets gH, which is finite.
- 6. Contraposition of the implication is given by aH = bH ⇒ Ha = Hb. We can rewrite the implication equivalently as b⁻¹aH = H ⇒ H = Hba⁻¹. Now for any g ∈ G and h ∈ H, choose b = gh and a = g, then b⁻¹aH = h⁻¹g⁻¹gH = h⁻¹H = H is fulfilled, so by assumption H = Hba⁻¹ = Hghg⁻¹. By property of cosets we have ghg⁻¹ ∈ H. Since h ∈ H is arbitrary, we obtain gHg⁻¹ ≤ H for any g.