THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 3030 Abstract Algebra 2024-25 Homework 6 Due Date: 24th October 2024

Compulsory Part

- 1. Let X be a G-set. Show that G acts faithfully on X if and only if no two distinct elements of G have the same action on each element of X.
- 2. Let *H* be a subgroup of *G*, and let L_H be the set of all left cosets of *H* in *G*. Show that there is a well-defined action of *G* on L_H given by g(aH) = (ga)H for $g \in G$ and $aH \in L_H$. We call L_H a **left coset** *G*-**set**.
- 3. Let H < G. The **centralizer** of H is the set

$$Z_G(H) := \{g \in G : ghg^{-1} = h \text{ for all } h \in H\},\$$

and the **normalizer** of H is the set

$$N_G(H) := \{g \in G : gHg^{-1} = H\}.$$

- (a) Show that $N_G(H)$ is the largest subgroup of G in which H is normal.
- (b) Show that $Z_G(H)$ is a normal subgroup of $N_G(H)$.
- (c) Show that the quotient group $N_G(H)/Z_G(H)$ is isomorphic to a subgroup of Aut(H).
- 4. Show that S_3 can never act transitively on a set with 5 elements.
- 5. Let G be a group which contains an element a whose order is at least 3. Show that $|Aut(G)| \ge 2$.
- 6. Let G be a group whose order is a prime power (i.e. a p-group for some prime p). Let N be a nontrivial normal subgroup of G. Show that $N \cap Z(G) \neq \{e\}$.

Optional Part

- 1. Let G be the additive group of real numbers. Let the action of $\theta \in G$ on the real plane \mathbb{R}^2 be given by rotating the plane counterclockwise about the origin through θ radians. Let P be a point other than the origin in the plane.
 - (a) Show that \mathbb{R}^2 is a *G*-set.
 - (b) Describe geometrically the orbit containing P.
 - (c) Find the group G_P .
- 2. Let X be a G-set and let $Y \subseteq X$. Show that $G_Y := \{g \in G : gy = y \text{ for all } y \in Y\}$ is a subgroup of G.
- 3. Let $\{X_i : i \in I\}$ be a disjoint collection of sets, meaning that $X_i \cap X_j = \emptyset$ for $i \neq j$. Suppose that each X_i is a *G*-set for the same group *G*.
 - (a) Show that $\bigcup_{i \in I} X_i$ can naturally be viewed as a *G*-set; we called it the **union** of the *G*-sets X_i .
 - (b) Show that every G-set X is the union of its orbits.
- 4. Let X and Y be G-sets with the same group G. An isomorphism between the G-sets X and Y is a bijection φ : X → Y which is equivariant, i.e. such that gφ(x) = φ(gx) for all x ∈ X and g ∈ G. Two G-sets are isomorphic if there exists an equivariant bijection between them.

Let X be a transitive G-set, and let $x_0 \in X$. Show that X is isomorphic to the G-set L of all left cosets of G_{x_0} . [*Hint:* For $x \in X$, suppose $x = gx_0$, and define $\phi : X \to L$ by $\phi(x) = gG_{x_0}$. Be sure to show that ϕ is well-defined!]

- 5. Let X_i for i ∈ I be G-sets for the same group G, and suppose that the sets X_i are not necessarily disjoint. Let X'_i = {(x, i) : x ∈ X_i} for each i ∈ I. Then the sets X'_i are disjoint, and each can still be regarded as a G-set in an obvious way. (The elements of X_i have simply been tagged by i to distinguish them from the elements of X_j for i ≠ j.) The G-set U_{i∈I} X'_i is called the **disjoint union** of the G-sets X_i. Show that every G-set is isomorphic to a disjoint union of left coset G-sets. (Therefore, left coset G-sets are building blocks of G-sets.)
- 6. Let G be a group. Show that G/Z(G) is isomorphic to Inn(G), the set of all inner automorphisms of G. Use this to give another proof of the fact that if G/Z(G) is cyclic, then G is abelian.
- 7. Let G be a finite group, and let $H \leq G$ be a subgroup of index p, where p is the smallest prime which divides |G|.
 - (a) Write the action of G on the set G/H of left cosets by left multiplication as a homomorphism $\rho: G \to S_p$, where S_p denotes the p-th symmetric group.
 - (b) Show that ker $\rho \leq H$.
 - (c) Further show, by using the hypothesis, that $H = \ker \rho$. Hence, conclude that H is normal in G.

8. Let G be a finite group, and let $H \leq G$ be a subgroup of index n. Prove that H contains a subgroup K which is normal in G and such that [G : K] divides the gcd of |G| and n!. [*Hint:* Use the strategy of the preceding exercise.]