THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 3030 Abstract Algebra 2024-25 Homework 5 Due Date: 17th October 2024

Compulsory Part

- 1. Let K and L be normal subgroups of G with $K \vee L = G$, and $K \cap L = \{e\}$. Show that $G/K \simeq L$ and $G/L \simeq K$.
- 2. Suppose

 $\{e\} \stackrel{\iota}{\longrightarrow} N \longrightarrow G \stackrel{\varphi}{\longrightarrow} K \to \{e\}$

is an exact sequence of groups. Suppose also that there is a group homomorphism τ : $G \to N$ such that $\tau \circ \iota = \mathrm{id}_N$. Prove that $G \simeq N \times K$.

3. Show that if

 $H_0 = \{e\} \le H_1 \le H_2 \le \dots \le H_n = G$

is a subnormal (normal) series for a group G, and if H_{i+1}/H_i is of finite order s_{i+1} , then G is of finite order $s_1s_2\cdots s_n$.

4. Show that an infinite abelian group can have no composition series.

[*Hint:* Use the preceding exercise, together with the fact that an infinite abelian group always has a proper normal subgroup.]

5. Show that a finite direct product of solvable groups is solvable.

Optional Part

- 1. Suppose N is a normal subgroup of a group G of prime index p. Show that, for any subgroup $H \leq G$, we either have
 - $H \leq N$, or
 - G = HN and $[H : H \cap N] = p$.
- 2. Suppose N is a normal subgroup of a group G such that $N \cap [G, G] = \{e\}$. Show that $N \leq Z(G)$.
- 3. Let $H_0 = \{e\} \leq H_1 \leq \cdots \leq H_n = G$ be a composition series for a group G. Let N be a normal subgroup of G, and suppose that N is a simple group. Show that the distinct groups among H_0, H_iN for $i = 0, \cdots, n$ also form a composition series for G.

[*Hint*: Note that H_iN is a group. Show that $H_{i-1}N$ is normal in H_iN . Then we have

$$(H_i N)/(H_{i-1} N) \simeq H_i/[H_i \cap (H_{i-1} N)],$$

and the latter group is isomorphic to

$$[H_i/H_{i-1}]/[(H_i \cap (H_{i-1}N))/H_{i-1}].$$

But H_i/H_{i-1} is simple.]

4. If H is a maximal proper subgroup of a finite solvable group G, prove that [G : H] is a prime power.