THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2230B/C - Complex Variables with Applications - 2024/25 Term 2

Homework 4 Due: Friday 14th February 2025, 23:59pm.

Note. For those of you who may not have the textbook, I have manually typed the questions below. However, make sure you always double check for typos if possible, and in which case please inform me by sending an email to bwang@math.cuhk.edu.hk; I would correct them immediately.

1. (P. 103, Q1) Show that

(a)
$$(1+i)^i = \exp\left(-\frac{\pi}{4} + 2n\pi\right) \exp\left(i\frac{\ln 2}{2}\right)$$
 $(n = 0, \pm 1, \pm 2, \ldots);$

(b) $\frac{1}{i^{2i}} = \exp[(4n+1)\pi]$ $(n = 0, \pm 1, \pm 2, ...).$

2. (P. 103, Q6) Show that if $z \neq 0$ and *a* is a real number, then $|z^a| = \exp(a \ln |z|) = |z|^a$, where the principal value of $|z|^a$ is to be taken.

3. (P. 103, Q9) Assuming that f'(z) exists, state the formula for the derivative of $c^{f(z)}$.

4. (P. 108, Q8) Point out how it follows from expressions

$$|\sin z|^2 = \sin^2 x + \sinh^2 y,$$
$$|\cos z|^2 = \cos^2 x + \sinh^2 y,$$

that

$$(a) |\sin z| \ge |\sin x|; \quad (b) |\cos z| \ge |\cos x|.$$

5. (P. 108, Q9) With the aid of expressions

$$|\sin z|^2 = \sin^2 x + \sinh^2 y,$$
$$|\cos z|^2 = \cos^2 x + \sinh^2 y,$$

show that

(a) $|\sinh y| \le |\sin z| \le \cosh y;$ (b) $|\sinh y| \le |\cos z| \le \cosh y.$

6. (P. 114, Q3) Solve the equation $\cos z = \sqrt{2}$ for z.

Practice Problems (Do not turn in)

P.103: 7 P.108: 14, 16