MATH 2068 Honours Mathematical Analysis II
2024-25 Term 2
Suggested Solution to Homework 9

9.3-1 Test the following series for convergence and for absolute convergence:
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Solution. (c) Since lim ‘(71)+2n = lim ? =1 # 0, the series Z n)+2 is not con-

vergent and not absolutely convergent by the nth Term Test.
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(d) Let f(z) = —=. Then f'(z) =

< 0 when z > 3. So (n711Inn)% 4 is a decreasing
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sequence of strictly positive numbers. By the Alternating Test, the series g (—1)n Tt —
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is convergent, and so is E (—1)"* —

n=1

Note that
— 1' n_l — 1' 1 —
= oo (-1)n+tin=llnn| oo Inn

o0
1
and the series g — is divergent (so not absolutely convergent). By the Limit Compari-
n
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son Test II (Theorem 9.2.1 of the textbook), the series Z(—l)”“ﬂ is not absolutely
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convergent.

9.4-6 Determine the radius of convergence of the series Z anx", where a, is given by:
(c) n™/n!, (d) (Inn)~t n>2.

Solution. (c) The radius of convergence of the series Z apx™ is
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ln(”m:hm<1+ln(1+1/n))=1.

an+1



