MATH 2068 Honours Mathematical Analysis II 2024-25 Term 2 Suggested Solution to Homework 8

8.2-1 Show that the sequence $(x^n/(1+x^n))$ does not converge uniformly on [0,2] by showing that the limit function is not continuous on [0,2].

Solution. It is easy to see that

$$\lim (x^n/(1+x^n)) = f(x) \coloneqq \begin{cases} 0 & \text{if } 0 \le x < 1; \\ 1/2 & \text{if } x = 1; \\ 1 & \text{if } 1 < x \le 2. \end{cases}$$

If the sequence $(x^n/(1+x^n))$ of continuous functions converges uniformly on [0,2], then the limit function f is also continuous on [0,2], by Theorem 8.2.2 of the textbook. However, f is clearly discontinuous at 1. Therefore the sequence $(x^n/(1+x^n))$ does not converge uniformly on [0,2].

8.2-9 Let $f_n(x) \coloneqq x^n/n$ for $x \in [0, 1]$. Show that the sequence (f_n) of differentiable functions converges uniformly to a differentiable function f on [0, 1], and that the sequence (f'_n) converges on [0, 1]to a function g, but that $g(1) \neq f'(1)$.

Solution. For each $n \in \mathbb{N}$, we have $|f_n(x) - 0| = |x|^n / n \le 1/n$ for all $x \in [0, 1]$, and so

$$||f_n - 0||_{[0,1]} \le 1/n \to 0$$
 as $n \to \infty$.

Hence (f_n) converges uniformly to the zero function $f \equiv 0$ (clearly differentiable) on [0, 1]. For the sequence (f'_n) , we have

$$\lim_{n \to \infty} (f'_n(x)) = \lim_{n \to \infty} x^{n-1} = g(x) \coloneqq \begin{cases} 0 & \text{if } 0 \le x < 1; \\ 1 & \text{if } x = 1. \end{cases}$$

However, g(1) = 1 while f'(1) = 0.

- 9.2-3 Discuss the convergence or the divergence of the series with nth term (for sufficiently large n) given by:
 - (e) $(n \ln n)^{-1}$ (f) $(n(\ln n)(\ln \ln n)^2)^{-1}$

Solution. (e) The function $f(x) \coloneqq (x \ln x)^{-1}$ is positive and decreasing on $[2, \infty)$. Moreover,

$$\int_{2}^{\infty} f(t) dt = \lim_{b \to \infty} \int_{2}^{b} f(t) dt = \lim_{b \to \infty} \int_{2}^{b} \frac{1}{t \ln t} dt = \lim_{b \to \infty} \left[\ln(\ln t) \right]_{2}^{b} = \infty.$$

By the Integral Test (Theorem 9.2.6 of the textbook), the series $\sum f(n) = \sum (n \ln n)^{-1}$ is divergent.

(f) The function $f(x) \coloneqq (x(\ln x)(\ln \ln x)^2)^{-1}$ is positive and decreasing on $[4,\infty)$. Moreover,

$$\int_{4}^{\infty} f(t) dt = \lim_{b \to \infty} \int_{4}^{b} f(t) dt = \lim_{b \to \infty} \int_{4}^{b} \frac{1}{t(\ln t)(\ln \ln t)^{2}} dt = \lim_{b \to \infty} \left[\frac{-1}{\ln \ln t}\right]_{4}^{b} = \frac{1}{\ln \ln 4}.$$

By the Integral Test (Theorem 9.2.6 of the textbook), the series $\sum f(n) = \sum (n(\ln n)(\ln \ln n)^2)^{-1}$ is convergent.