MATH 2068 Honours Mathematical Analysis II 2024-25 Term 2 Suggested Solution to Homework 7

8.1-4 Evaluate $\lim (x^n/(1+x^n))$ for $x \in \mathbb{R}, x \ge 0$.

Solution. If
$$0 \le x < 1$$
, then $\lim (x^n/(1+x^n)) = 0/(1+0) = 0$.
If $x = 1$, then $\lim (x^n/(1+x^n)) = 1/(1+1) = 1/2$.
If $x > 1$, then $\lim (x^n/(1+x^n)) = \lim (1/(x^{-n}+1)) = 1/(0+1) = 1$.

8.1-14 Show that if 0 < b < 1, then the convergence of the sequence in Exercise 4 is uniform on the interval [0, b], but is not uniform on the interval [0, 1].

Solution. Let (f_n) be the sequence of functions considered in Exercise 4, and let f be its limit. Since $0 \le f_n(x) = \frac{x^n}{1+x^n} \le \frac{b^n}{1+0} = b^n$ for any $x \in [0, b]$, we have

$$||f_n - 0||_{[0,b]} \le b^n \quad \text{for all } n \in \mathbb{N}.$$

As 0 < b < 1, we have $\lim(b^n) = 0$ and so $\lim ||f_n - 0||_{[0,b]} = 0$. Therefore (f_n) converges uniformly to $f \equiv 0$ on [0, b].

On the other hand, for all $n \in \mathbb{N}$,

$$||f_n - f||_{[0,1]} \ge |f_n(2^{-1/n}) - f(2^{-1/n})| = \left|\frac{1/2}{1+1/2} - 0\right| = \frac{1}{3}.$$

So $||f_n - f||_{[0,1]} \not\to 0$ as $n \to \infty$. Therefore (f_n) does not converge uniformly to f on [0,1]. \Box

8.1-20 Show that if a > 0, then the sequence $(n^2 x^2 e^{-nx})$ converges uniformly on the interval $[a, \infty)$, but that it does not converge uniformly on the interval $[0, \infty)$.

Solution. If $0 < a \le x$, then $e^{nx} \ge \frac{1}{6}(nx)^3 \ge \frac{n^3a}{6}x^2$, and hence

$$0 \le f_n(x) \coloneqq n^2 x^2 e^{-nx} \le \frac{6}{an}$$

Thus $\lim ||f_n - 0||_{[a,\infty)} = 0$ and (f_n) converges uniformly to the zero function 0 on $[a,\infty)$.

In particular, if (f_n) converges uniformly to f on $[0, \infty)$, then f(x) = 0 for x > 0. However, for all $n \in \mathbb{N}$,

$$||f_n - f||_{[0,\infty)} \ge |f_n(1/n) - f(1/n)| = e^{-1} > 0.$$

Therefore, (f_n) does not converge uniformly on $[0, \infty)$.