MATH 2068 Honours Mathematical Analysis II 2024-25 Term 2 Suggested Solution to Homework 6

7.3-17 Let $J := [\alpha, \beta]$, let $\varphi : J \to \mathbb{R}$ have a continuous derivative on J, and let $f : I \to \mathbb{R}$ be continuous on an interval I containing $\varphi(J)$.

Use the following argument to prove the Substitution Theorem 7.3.8.

Define $F(u) := \int_{\varphi(\alpha)}^{u} f(x) dx$ for $u \in I$, and $H(t) := F(\varphi(t))$ for $t \in J$. Show that $H'(t) = f(\varphi(t))\varphi'(t)$ for $t \in J$ and that

$$\int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) \, dx = F(\varphi(\beta)) = H(\beta) = \int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) \, dt.$$

Solution. By extending f, we may assume that I is a closed interval [a, b] and $\varphi(J) \subseteq (a, b)$. (We do this because the Fundamental Theorem of Calculus in the note is slightly different from the one in the textbook.)

Since f is continuous on [a, b], the Fundamental Theorem of Calculus (Theorem 2.25(ii)) implies that F(u) is differentiable on (a, b) and F' = f on (a, b). By Chain Rule (Proposition 1.6), $H = F \circ \varphi$ is differentiable on J and

$$H'(t) = F'(\varphi(t))\varphi'(t) = f(\varphi(t))\varphi'(t) \quad \text{for } t \in J.$$

Note that H' is continuous on J, and so $H' \in \mathcal{R}[\alpha, \beta]$. Hence, by the Fundamental Theorem of Calculus (Theorem 2.25(i)) again,

$$\int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t) \, dt = \int_{\alpha}^{\beta} H'(t) \, dt = H(\beta) - H(\alpha).$$

Since $H(\alpha) = \int_{\varphi(\alpha)}^{\varphi(\alpha)} f(x) \, dx = 0$, we have

$$\int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t) \, dt = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) \, dx.$$

_	_	_	

7.3.21 Let $f, g \in \mathcal{R}[a, b]$.

- (a) If $t \in \mathbb{R}$, show that $\int_a^b (tf \pm g)^2 \ge 0$.
- (b) Use (a) to show that $2\left|\int_{a}^{b} fg\right| \le t \int_{a}^{b} f^{2} + (1/t) \int_{a}^{b} g^{2}$ for t > 0.
- (c) If $\int_a^b f^2 = 0$, show that $\int_a^b fg = 0$.
- (d) Now prove that $\left|\int_{a}^{b} fg\right|^{2} \leq \left(\int_{a}^{b} |fg|\right)^{2} \leq \left(\int_{a}^{b} f^{2}\right) \cdot \left(\int_{a}^{b} g^{2}\right)$. This inequality is called the **Cauchy-Bunyakovsky-Schwarz Inequality** (or simply the **Schwarz Inequality**).

Solution. (a) For $t \in \mathbb{R}$, we have $(tf \pm g)^2 \ge 0$, and so $\int_a^b (tf \pm g)^2 \ge 0$ by Proposition 2.14(i).

(b) Since $f, g \in \mathcal{R}[a, b]$, we have $f^2, fg, g^2 \in \mathcal{R}[a, b]$ by Proposition 2.19. The linearity of integral (Proposition 2.9) then implies that

$$0 \le \int_{a}^{b} (tf \pm g)^{2} = t^{2} \int_{a}^{b} f \pm 2t \int_{a}^{b} fg + \int_{a}^{b} g^{2}.$$

Thus, for t > 0, we have

$$-t\int_{a}^{b}f^{2} - (1/t)\int_{a}^{b}g^{2} \leq 2\int_{a}^{b}fg \leq t\int_{a}^{b}f^{2} + (1/t)\int_{a}^{b}g^{2},$$

that is $2\left|\int_{a}^{b} fg\right| \le t \int_{a}^{b} f^{2} + (1/t) \int_{a}^{b} g^{2}.$

- (c) By (b), we have $\left|\int_{a}^{b} fg\right| \leq (1/2t) \int_{a}^{b} g^{2}$ for t > 0. Letting $t \to +\infty$ yields $\left|\int_{a}^{b} fg\right| \leq 0$, that is $\int_{a}^{b} fg = 0$.
- (d) If $\int_{a}^{b} f^{2} = 0$ or $\int_{a}^{b} g^{2} = 0$, we have $\int_{a}^{b} fg = 0$ by (c). If $\int_{a}^{b} f^{2} > 0$ and $\int_{a}^{b} g^{2} > 0$, taking $t = \sqrt{\int_{a}^{b} g^{2}} / \sqrt{\int_{a}^{b} f^{2}} > 0$ in (b) yields

$$2\left|\int_{a}^{b} fg\right| \leq 2\sqrt{\int_{a}^{b} f^{2}}\sqrt{\int_{a}^{b} g^{2}},$$

that is $\left|\int_{a}^{b} fg\right| \leq \left(\int_{a}^{b} f^{2}\right) \cdot \left(\int_{a}^{b} g^{2}\right)$. The desired inequalities follow if we replace f, g by |f|, |g| respectively.