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Suggested Solution to Homework 3

6.3-3 Let f(x) := x2 sin(1/x) for 0 < x ≤ 1 and f(0) := 0, and let g(x) := x2 for x ∈ [0, 1]. Then both

f and g are differentiable on [0, 1] and g(x) > 0 for x 6= 0. Show that lim
x→0

f(x) = 0 = lim
x→0

g(x)

and that lim
x→0

f(x)/g(x) does not exist.

Solution. We only check that f is differentiable at 0. Indeed, for any x ∈ (0, 1],
∣∣∣f(x)−f(0)x−0

∣∣∣ =

|x|| sin(1/x)| ≤ |x|, so that f ′(0) = lim
x→0

f(x)−f(0)
x−0 = 0 by squeeze theorem.

It also follows from squeeze theorem that lim
x→0

f(x) = 0 = lim
x→0

g(x) because |f(x)| ≤ |g(x)| = x2

for any x ∈ [0, 1]. However, lim
x→0

f(x)/g(x) = lim
x→0

sin(1/x) does not exist, which can be shown by

sequential criterion.

6.4-3 Use Induction to prove Leibniz’s rule for the nth derivative of a product:

(fg)(n)(x) =
n∑

k=0

(
n

k

)
f (n−k)(x)g(k)(x).

Solution. The formula is true when n = 1 since it is just the product rule. Suppose the formula

is true for some n ∈ N. Differentiating the formula once more, we have

(fg)(n+1)(x)

=
n∑

k=0

(
n

k

)(
f (n−k+1)(x)g(k)(x) + f (n−k)(x)g(k+1)(x)

)
= f (n+1)(x)g(x) +

n∑
k=1

(
n

k

)
f (n−k+1)(x)g(k)(x) +

n−1∑
k=0

(
n

k

)
f (n−k)(x)g(k+1)(x) + f(x)g(n+1)(x)

= f (n+1)(x)g(x) +

n∑
k=1

(
n

k

)
f (n−k+1)(x)g(k)(x) +

n∑
k=1

(
n

k − 1

)
f (n−k+1)(x)g(k)(x) + f(x)g(n+1)(x)

= f (n+1)(x)g(x) +

n∑
k=1

((
n

k

)
+

(
n

k − 1

))
f (n−k+1)(x)g(k)(x) + f(x)g(n+1)(x)

= f (n+1)(x)g(x) +

n∑
k=1

(
n + 1

k

)
f (n+1−k)(x)g(k)(x) + f(x)g(n+1)(x)

=
n+1∑
k=0

(
n + 1

k

)
f (n+1−k)(x)g(k)(x).

It follows from Mathematical Induction that the formula holds for all n ∈ N.

6.4-4 Show that if x > 0, then 1 + 1
2x−

1
8x

2 ≤
√

1 + x ≤ 1 + 1
2x.

Solution. Let f(x) =
√

1 + x. Then, for any x > −1,

f ′(x) =
1

2
√

1 + x
, f ′′(x) = − 1

4(1 + x)3/2
, f ′′′(x) =

3

8(1 + x)5/2
.



Fix x > 0. By Taylor’s Theorem, there exists c1 ∈ (0, x) such that

f(x) = f(0) + f ′(0)(x− 0) +
f ′′(c1)

2!
(x− 0)2

= 1 +
1

2
x− 1

8(1 + c1)3/2
x2.

Since − 1
8(1+c1)3/2

x2 < 0, we have
√

1 + x ≤ 1 + 1
2x.

Similarly, there exists c2 ∈ (0, x) such that

f(x) = f(0) + f ′(0)(x− 0) +
f ′′(0)

2!
(x− 0)2 +

f ′′′(c2)

3!
(x− 0)3

= 1 +
1

2
x− 1

8
x2 +

1

16(1 + c2)5/2
x3.

Since 1
16(1+c2)5/2

x3 > 0, we have 1 + 1
2x−

1
8x

2 ≤
√

1 + x.


