Pf of Thm 9.4.10: Since [a,b] < (-R,R), I or << 1 such that - CR< a and b< CR. (Note: c depends only on 9,6) Therefore YXE[a,b], IXI<CR. By argument in the proof of Cauchy-Hadamard Thur, we have ∃KEIN S.t. Ianx" | ≤ C", YN≥K Since ZCN is conveyent, Weierstrass M-Test (Thm 9.4.6) $\Rightarrow \left(\sum_{n=k}^{\infty} a_n x^n \text{ and } fience\right) \sum_{n=0}^{\infty} a_n x^n \text{ conveyes uniformly on } [a,b].$ Thm 9.4.11 · The limit of power series is <u>continuous</u> on the interval of convergence.

• A power series can be <u>integrated term-by-term</u> over any <u>closed</u> and <u>bounded</u> interval contained in the interval of convergence.

 $Pf: \bullet \forall X \in (-R, R), \text{ choose a closed & bounded interval [a,b]}$ s.t. $X \in [a,b] \subset (-R, R).$ Then on [a,b], $Za_n X^n$ converges uniformly. (Thus 9.4.10)

Thun 9.4.2
$$\Rightarrow \sum_{n=1}^{\infty} \hat{a}_n X^n$$
 is cartinuous on $[a, b]$ and there at x
Suice $X \in (-R, R)$ is arbitrary, $\sum_{n=0}^{\infty} \hat{a}_n x^n$ is cartinuous on $(-R, R)$.
• For any closed and bounded interval $[a, b] \subset (-R, R)$,
 $\sum_{n=1}^{\infty} a_n x^n$ converges uniformly on $[a, b]$
and hence $Thun 9.4.3 \Rightarrow$ integrability and
 $\int_{a}^{\infty} \sum_{n=1}^{\infty} a_n x^n = \sum_{n=1}^{\infty} \int_{a}^{b} a_n x^n$.

Thun 9.4.12 (Differentiation Thm)
A power series can be differentiated term-by-term within the
interval of convergence. In fact, if
$$R = radius$$
 of convergence of $\Sigma a_n x^n$
and $f(x) = \sum_{n=0}^{\infty} a_n x^n$, for $|x| < R$,
then the radius of convergence of $\sum_{n=0}^{\infty} na_n x^{n-1} = R$,
and $f'(x) = \sum_{n=1}^{\infty} na_n x^{n-1}$, for $|x| < R$

Pf: All conditions of Thun 8.2,3 on interchanging of limit and derivative are clearly satisfied when restricted to a closed and bounded interval [a,b] ⊂ (-R,R) (using Thm9.4.10)

except the uniform convergence of the
$$Z(anx^{n})' = Znanx^{n-1}$$

on [a,b] needs a proof.
By Thm 9.4.10, we only need to prove the following
Radius of convergence of $Znanx^{n-1} = R$
= Radius of convergence of $Zanx^{n}$
Pf

Since
$$n^{\frac{1}{n}} \rightarrow 1$$
, the seq. $(|(n+i)a_{n+i}|^{\frac{1}{n}})$ is bounded
 \Leftrightarrow the seq $(|a_{ij}|^{\frac{1}{n}})$ is bounded

unbounded case:

$$R=0 \iff Radius of convergence of $Z nan x^{n-1} = 0$$$

bounded case:
(Radius of convergence of
$$\sum nanx^{n-1}$$
) = $\lim \sup |(nt1)a_{nt1}|^{\frac{1}{n+1}}$ (check!)
= $\lim \sup |na_n|^{\frac{1}{n}} = \lim \sup (n^{\frac{1}{n}}|a_n|^{\frac{1}{n}})$
= $\lim \sup |a_n|^{\frac{1}{n}}$ (since $n^{\frac{1}{n}} \rightarrow 1$)
= R^{-1} .
The claim and hence the Thm is proved since

 $\not\prec$

 $[a,b] \subset (-R,R)$ is arbitrary.

Remarks: (1) Differentiation Thm 9.4.12 makes no conclusion for
$$|X|=R$$
:
Q3. $\sum \frac{1}{N^2} X^n$ converges for $|X|=1$ (= R)
but $\left(\sum_{h=2}^{1} X^{n}\right)' = \sum_{n=2}^{1} X^{n-1}$ converges at $X=-1$
diverges at $X=1$.

(ii) Repeated application of Thu 9.4.12
$$\Rightarrow$$

 $\forall k \in \mathbb{N}$, $\left(\sum_{n=0}^{\infty} a_n \chi^n\right)^{(k)} = \sum_{n=k}^{\infty} \frac{n!}{(n-k)!} a_n \chi^{n-k}$ ($|\chi| < R$)