intreasing sequence.
Let
$$g_n = f_n - f$$
.

Then
$$g_n \ge 0$$
 decreasing, continuous, and
 $g_n \ge 0$ (pointurise)

(Different proof from the Textbook)
Assume on the contrary that
$$g_n \neq 0$$
 (not uniform).
Then by Lemma 8.1.5,
 $\exists \epsilon_0 > 0$, a subseq g_{n_k} of g_n , and a seq $\chi_k \in [a_k b]$
s.t. $|g_{n_k}(\chi_k) - 0| \ge \epsilon_0$

 $g_{N_k}(X_k) \geq \varepsilon_0$ \Rightarrow Since XkEtarb], (Xk) is a bounded seq. Then Bolzano-Weierstrass Thm (Thm 3.4.8) implies that X_k thas a convergence subseq $(X_{ke})_{e=1}^{\infty}$ lin Xkp = Z. let Since [4,b] is a closed interval, ZE [a,b]. By assumption $g_n(z) \rightarrow 0$ as $n \rightarrow \infty$. $= g_{\eta_{k_{j}}}(z) \rightarrow 0 \quad \text{as} \quad l \rightarrow \infty .$ ⇒ ∃ L>0 s.t. \mathbb{I} $l \geq L$, then $0 \leq \mathbb{I}_{n_{k,l}}(z) < \frac{\varepsilon_0}{2}$ In particular $0 \leq g_{n_k}(z) < \frac{\varepsilon_0}{z}$ For clavity of presentation, denote nk, by N. Then $0 \leq g_{N}(z) < \frac{\varepsilon_{0}}{z}$ Non using containity of GN (= Gn,) $\lim_{k \to \infty} Q_{N}(X_{k}) = Q_{N}(z) \qquad \left(\text{Since } \lim_{k \to \infty} X_{k} = z \right)$ ⇒ ILI>O St. if l>LI, then $g_{N}(X_{k_0}) < \frac{\varepsilon_0}{2}$

Using the assumption that
$$g_n$$
 is decreasing, we have $g_n(x_{ke}) \leq g_N(x_{ke}) < \frac{\varepsilon_o}{z}$, $\forall n \ge N = n_{k_{l}}$

In particular, for $n = n_{k_{e}}$ with $l \ge \max\{L, L, \}$, we have $\mathcal{E}_{0} \le \mathcal{G}_{n_{k_{e}}}(X_{k_{e}}) \le \frac{\varepsilon_{0}}{z}$

which is a contradiction.

Therefore $g_n \Rightarrow 0$ (milfans convergence) \ll