$$\Rightarrow \frac{f(\alpha)}{g(\alpha)} > \frac{1}{2}M + \frac{f(c)}{g(\alpha)} > \frac{1}{2}M - \frac{1}{2}$$
$$= \frac{1}{2}(M - 1) \qquad \forall \alpha \in (\alpha, c_1)$$

Since
$$M > 1$$
 is arbitrary, this shows that

$$\lim_{X \to a^+} \frac{f(x)}{g(x)} = +\infty$$
Subcase of "L=-00" is similar.

$$\underbrace{\begin{array}{l} \underline{g} 6.3.6} \\ (a) \\ \times \neq \infty \end{array} \underbrace{\begin{array}{l} \underline{l} \underline{u} \\ \times \end{array}}_{X \Rightarrow \infty} \underbrace{\begin{array}{l} \underline{l} \underline{u} \\ \underline{u} \\ \times \end{array}}_{X \Rightarrow \infty} \underbrace{\begin{array}{l} \underline{l} \underline{u} \\ \underline{u} \\ \times \end{array}}_{X \Rightarrow \infty} \underbrace{\begin{array}{l} \underline{u} \\ \underline{u} \\ \underline{u} \\ \underline{u} \\ \underline{u} \\ \end{array}}_{X \Rightarrow \infty} \underbrace{\begin{array}{l} \underline{u} \\ \underline{u} \\$$

•
$$f(x) = \ln \chi$$
 has derivative $f'(x) = \frac{1}{\chi}$ on $(0, \infty)$
• $g(x) = \chi$ has derivative $g'(x) = 1 \neq 0$ on $(0, \infty)$

•
$$\lim_{X \to \infty} G(X) = +\infty$$

•
$$\lim_{X \to \infty} \frac{f'(x)}{g'(x)} = \lim_{X \to \infty} \frac{1}{1} = 0$$

 $\therefore \text{ L'Hospital Rule II} \Rightarrow \lim_{X \to \infty} \frac{\ln X}{X} = 0.$ (Usually, one subply write $\lim_{X \to \infty} \frac{\ln X}{X} = \lim_{X \to \infty} \frac{1}{1} = 0$)

(b)
$$\lim_{X \to \infty} e^{-X} x^2 = \lim_{X \to \infty} \frac{x^2}{e^X}$$

 $\cdot (x^2)' = 2x$, $\forall x$
 $\cdot (e^X)' = e^X \pm 0, \forall x$
 $\cdot e^X \Rightarrow +\infty$ as $x \Rightarrow +\infty$
But $\lim_{X \to \infty} \frac{2x}{e^X}$ still indeterminate.
So use need to start when $\lim_{X \to \infty} \frac{2x}{e^X}$ first:
 $\cdot (2x)' = 2$, $\forall x$
 $\cdot (e^X)' = e^X \pm 0$, $\forall x$
 $\cdot (e^X)' = e^X \pm 0$, $\forall x$
 $\cdot e^X \Rightarrow +\infty$ as $x \Rightarrow +\infty$
 $\cdot \lim_{X \to \infty} \frac{2}{e^X} = 0$ (exists)
 \therefore L'Hospital Rule $\Rightarrow \lim_{X \to \infty} \frac{2x}{e^X} = 0$ (exists)
And capplying L'Hospital Rule again, $\lim_{X \to \infty} \frac{x^2}{e^X} = 0$.
(We usually just write
 $\lim_{X \to \infty} e^{-X} x^2 = \lim_{X \to \infty} \frac{x^2}{e^X} = \lim_{X \to \infty} \frac{2x}{e^X} = \lim_{X \to \infty} \frac{2}{e^X} = 0$.

(c)
$$\lim_{X \to 0+} \frac{\ln \sin x}{\ln x} = \lim_{X \to 0+} \frac{(\ln \sin x)'}{(\ln x)'}$$
$$= \lim_{X \to 0+} \frac{\frac{\cos x}{\sin x}}{\frac{1}{x}} = \lim_{X \to 0+} \frac{\cos x}{\sqrt{\sin x}}$$
$$= 1 \quad \left(\begin{array}{c} \cos & \lim_{X \to 0+} \frac{x}{\sqrt{\sin x}} \\ \cos & \lim_{X \to 0+} \frac{x}{\sqrt{\sin x}} \end{array} \right) = 1 = \lim_{X \to 0+} \cos x \right)$$

(d) It is easy to see
$$\lim_{x \to \infty} \frac{X - \sin x}{x + \sin x} = \lim_{x \to \infty} \frac{1 - \frac{\sin x}{x}}{1 + \frac{\sin x}{x}} = 1$$
.

However,
$$\lim_{X \to \infty} \frac{(x - \sin x)'}{(x + \sin x)'} = \lim_{X \to \infty} \frac{1 - \cos x}{1 + \cos x}$$
 doesn't exist.
The condition " $\lim_{X \to \alpha +} \frac{f(x)}{g(x)}$ exists" is sufficient, but not necessary
for existence of $\lim_{X \to \alpha} \frac{f(x)}{g(x)}$.

(a)
$$(00 - 00 \text{ form})$$

 $lin_{X>0t} \left(\frac{1}{X} - \frac{1}{Airx}\right)$ $(X \in (0, \frac{\pi}{2}))$
 $= lin_{X>0t} \frac{SirX - \chi}{\chi Sirx}$ $(transfum to \frac{0}{0} \text{ form})$

$$= \lim_{X \to 0+} \frac{\cos X - 1}{\sin x + x \cos x} \qquad (L'(Hospital)) (Still \frac{0}{0} form)$$

$$= \lim_{X \to 0+} \frac{-\sin X}{2\cos x - x \sin x} \qquad (L'(Hospital))$$

$$= 0 \qquad (limit exists, calculation justified)$$

(b)
$$(0 \cdot (-\infty) \text{ form})$$

 $\lim_{X \to 0+} \times \ln X$ $(x \in (0, \infty))$
 $= \lim_{X \to 0+} \frac{\ln X}{\frac{1}{2}}$ $(\text{transforms to } \frac{-\infty}{\infty} \text{ form})$
 $= \lim_{X \to 0+} \frac{\frac{1}{2}}{-\frac{1}{2^2}}$ (1 tospital)
 $= \lim_{X \to 0+} (-x) = 0$ $(\text{limit exists , calculation justified })$

(c) (0° form)

$$\lim_{X \to 0^{+}} x^{X}$$

$$= \lim_{X \to 0^{+}} e^{X \ln X}$$

$$= e^{\lim_{X \to 0^{+}} x \ln X}$$

$$= e^{0} = 1$$

(fransforms to 0.(-a) frans which can be calculated using L'Hospital as in (6))

(e) $(\infty^{\circ} \text{ form})$ $\lim_{X \to 0^{+}} (1 + \frac{1}{X})^{X}$ $(XE(0, \infty))$ (limit of the other end) $= e^{\lim_{X \to 0^{+}} X \ln(1 + \frac{1}{X})}$ (transform to 0.0 form) $= e^{\lim_{X \to 0^{+}} \frac{1}{1 + \frac{1}{X}}}$ (L'Hospital as before) $= e^{\circ} = 1$. (limit exists, calculation justified)