\$6.2 The Mean Value Theorem

Recall: function f=I>R is said to have a $\bigvee_{\mathfrak{F}}(c)$ (+) (-5 - C+8 · <u>relative maximum</u> at CEI (320) if $\exists a \text{ neighborhood of } (V = V_{\delta}(C) = (c \cdot \delta, c + \delta)$, such that f(x) \left(c), UXEVNI; (in general, some part may be out of I) relative minimum at CEI if $\exists a \text{ neighborhood of } c, V = V_{\delta}(c) = (c \cdot \delta, c + \delta)$, such that f(x)>f(c), UXEVNI; relative extrement at CEI if either "relative maximum" ~ "relative minimum"

Note: The condition that CEI is an interior point is neccessary:

eg:
$$f(x)=x$$
 on TO,1] has relative extremum
at x=0 (min), but $f'(0)=1\pm0$,
(at x=1 (max), but $f'(1)=1\pm0$.)

Pf(of Thm 6.2.1): Prove only the case of relative maximum. The case of relative numiname is similar. Let CE interia of I, I has a relative maximum at c and f(c) exists. Suppose on the contrary that f(c) = 0, then either f'(c) > 0 or f'(c) < 0, If f'(c) > 0, i.e. $\lim_{\substack{X \to C \\ |X \neq c|}} \frac{f(x) - f(c)}{x - c} > 0$. Then (by Thm Fiz. 9 of the Textbook, MATH 2050), I a ubd. V=V5(C) $\frac{f(x)-f(c)}{x-c} > 0 \quad \forall x \in V \cap I, x \neq c.$ such that Since CEInterior of I, one can find a S,, OSTIST (if needed) so that (C-5, C+5,) C VNI.

Note that f there a relative number, there exists
$$\delta_{z}>0$$

such that $f(x) \leq f(z)$, $\forall x \in (z-\delta_{z}, z+\delta_{z}) \land I$
Then for $\delta_{z} = \min\{\delta_{1}, \delta_{2} \leq >0$,
 $(z-\delta_{z}, z+\delta_{z}) \subset (v \land I)$ and
 $(z-\delta_{z}, z+\delta_{z}) \subset (v \land I)$, $v \in (z-\delta_{z}, z+\delta_{z}) \land I$
As a result,
 $\frac{f(x) - f(z)}{x - c} > 0$,
 $d \neq (x) \leq f(z)$
Situe $(z, z+\delta_{z}) \subset (z-\delta_{z}, z+\delta_{z}) \subset V \land I$
The $(z+\delta_{z}) \leq (z-\delta_{z}, z+\delta_{z}) \subset V \land I$
The $(z+\delta_{z}) \leq (z-\delta_{z}, z+\delta_{z}) \subset V \land I$
The $(z+\delta_{z}) \leq (z-\delta_{z}, z+\delta_{z}) \leq V \land I$
 $\frac{f(x) - f(z)}{x - c} > 0 \Rightarrow f(x) - f(z) > 0$,
which contradicts the $2\pi Ol$ inequality.
Similarly, if $f(z) < 0$, one can find $\delta'_{z} > 0$ so that
 $\frac{f(x) - f(z)}{x - c} < 0 \Rightarrow f(x) - f(z) > 0$,
 $\forall x \in (z-\delta'_{z}, z+\delta'_{z}), x \neq c$.
and $f(x) \leq f(z)$
The $(z+\delta_{z}) \leq f(z) > 0 \Rightarrow f(z) < 0$.

$$\Rightarrow f(x) - f(c) > 0$$

cantracticts the znd moquality.

All together, we have

f(c)=0. ★

Cor6.2.2 Let
$$\cdot$$
 $f: I \Rightarrow \mathbb{R}$ cartinuous
 \cdot f has a velotive extremum at an interior point $c \in I$.
Then either \cdot $f(c)$ doesn't exist
 \sim \cdot $f(c) = 0$.

$$\underline{y}$$
: $f(x) = |x|$ on $I = \overline{I} - 1, 1\overline{J}$.
interior minimum at $x = 0$.
 $f(x)$ doesn't exist

$$\begin{array}{l} \underline{\mathsf{Thm}} \ 6.2.3 & (\underline{\mathsf{Rolle's Therem}}) & (a < b) \\ & (a < b) \\ & \mathsf{Suppore} \quad \cdot \ 5: [a,b] \rightarrow \mathsf{IR} \quad \mathsf{continuous} \quad (\mathsf{m} \ \mathsf{closed} \ \mathsf{interval} \ I = [a,b]) \\ & \bullet \ f'(x) \ \mathsf{exists} \quad \forall \ x \in (a,b) & (\mathsf{open} \ \mathsf{interval}, \mathsf{interin} \ \mathsf{of} \ I) \\ & \bullet \ f(a) = f(b) = 0 \\ & \mathsf{Then} \ \exists \ c \in (a,b) \ \mathsf{such} \ \mathsf{that} \quad f'(c) = 0 \end{array}$$

Pf: If f(x)=0 on ta,b], then f(x)=0 v x ∈ ta,b]. Notre done. If f(x) ≠0, then either f>0 for some point in (a,b) or f<0 for some point in (a,b). Note that f is untimous on the closed interval ta,b], f attains an absolute maximum and an absolute numium on I. (Thrn 53.4 of the Textbook, MATH 2050)

Hence, if f > 0 for some point in (a,b), f attains the absolute maximum, i.e. the value $sup_{f(x)} = x \in I_{f} = 0$, at some point $c \in (a,b)$ as f(a) = f(b) = 0.

Since
$$C \in (a,b)$$
, $f'(c)$ exists.
By Interior Extreme Thenew (Thm 6.2.1), $f'(c)=0$.
If there is no $x \in (a,b)$ s.t. $f > 0$, then we must have
 $f < 0$ for some $x \in (a,b)$. Hence $(-f) > 0$ for some $x \in (a,b)$
and $-f$ satisfies all conditions as f . Therefore,
 $\exists c \in (a,b)$ such that $(-f)'(c)=0 \Rightarrow f'(c)=0$.

$$\frac{Thm 6.2.4}{Mean Value Theorem}$$
Suppose • $f:[a,b] \rightarrow \mathbb{R}$ continuous (af'(x) exists $\forall x \in (a,b)$
Then $\exists a \text{ point } c \in (a,b)$ such that
$$f(b) - f(a) = f(c)(b-a)$$

Pf: Consider the function defined on
$$[a,b]$$
:
 $f(x) = f(x) - \left[\frac{f(b) - f(a)}{b - a}(x - a) + f(a)\right]$
 $= f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)$

Then φ is continuous on [a,b] as f is containons on [a,b], and $\varphi'(x)$ exists $\forall x \in (a,b)$ as f'(x) exists $\forall x \in (a,b)$.

At the end points

$$\begin{aligned}
\varphi(a) &= f(a) - f(a) - \frac{f(b) - f(a)}{b - a}(a - a) = 0 \\
\varphi(b) &= f(b) - f(a) - \frac{f(b) - f(a)}{b - a}(b - a) = 0 \\
&= 0
\end{aligned}$$

 \therefore 9 satisfies all conditions in Rolle's Thm (Thm 6.2.3). Hence $\exists c \in (q, b)$ such that

$$0 = \varphi'(c) = f'(c) - \frac{f(b) - f(a)}{b - a} \quad (by Thm 6.1.3 \text{ and } (x) = 1)$$

$$\therefore f(b) - f(a) = f'(c) (b - a) \cdot X$$

Applications of Mean Value Thenem

Thm 6.2.5 Suppose
$$f:[a,b] \Rightarrow |\mathbb{R}$$
 continuous $(a < b)$
 $f(x) = f(x) = 0$, $\forall x \in (a,b)$ (i.e. f differentiable $m(a,b)$)
 $f(x) = 0$, $\forall x \in (a,b)$.
Then f is a constant on $[a,b]$.
Pf: Let $x \in [a,b]$ and $x > a$.
Applying Mag. 11 line Theorem $f: [a \times T \rightarrow |\mathbb{R}$

Applying Mean Value Thm to
$$f:[a, x] \rightarrow \mathbb{R}$$
,
(which clearly satisfies all conditions of the Thm)
we find a point $C \in (a, x)$ such that
 $f(x) - f(a) = f(c) (x - a) = o$ (by assumption $f(c)=o$)
 $\Rightarrow f(x) = f(a), \forall x \in \mathbb{I}$.
 $\therefore f \in constant on \mathbb{I}$.

Cor6.2.6 Suppre
$$\cdot f,g:[a,b] \rightarrow \mathbb{R}$$
 continuon
 $\cdot f,g$ differentiable on (a,b)
 $\cdot f'(x) = g'(x), \forall x \in (a,b)$.
Then \exists constant C such that $f = g + C$ on $[a,b]$.

Recall f:I>R is said to be

• Unclasing on I if $X_1 < X_2$ $(X_1, X_2 \in I) \implies f(X_1) \le f(X_2)$

____note:"not <"

· decreasing on I if - f is increasing on I.

Thu 6.2.7 Let
$$f: I \rightarrow R$$
 be differentiable. Then
(a) f is increasing on $I \iff f(x) \ge 0$, $\forall x \in I$
(b) f is decreasing on $I \iff f(x) \le 0$, $\forall x \in I$

Pf: (a) (≠) let $f(x) \ge 0$, $\forall x \in I$. Then fn any $x_1, x_2 \in I$ with $x_1 < x_2$, we can capply the Mean Value Thm to $f: [x_1, x_2] \Rightarrow \mathbb{R}$ (since f is differentiable on $I \Rightarrow f: [x_1, x_2] \Rightarrow \mathbb{R}$ satisfies all conditions of mut) and find a point $c \in (x_1, x_2)$ such that $f(x_2) - f(x_1) = f(c) (x_2 - x_1)$ ≥ 0 since $f(c) \ge 0 \notin x_2 > x_1$. $\therefore f$ is increasing on I.

(a) (=>) Suppose f is differentiable and increasing on I. Then $\forall c \in I$, we have $\frac{f(x) - f(c)}{x - c} \ge 0$, $\forall x \in I$, $x \neq c$

because "f is in heaving" (both "positive (a gero)" if
$$X > C$$
,
both "hegative (a gero)" if $X < C$)

Hence f differentiable at (=)

$$f'(c) = \lim_{X \to c} \frac{f(x) - f(c)}{x - c} \ge 0$$

(b) Applying (a) to -f. X

<u>Remarks</u> :

$$\frac{\text{Thm } 6.2.8}{\text{Let}} (First Derivative Test for Extrema})$$
Let $\cdot f : (a,b] \rightarrow \mathbb{R}$ (additionance) (a < b)
 $\cdot c \in (a,b)$
 $\cdot f is differentiable on (a,c) and (c,b).$
Then (a) If $\exists \delta > 0$ s.t. $(c-\delta, c+\delta) \leq (a,b)$
 $(f(x) \geq 0 \text{ for } x \in (c-\delta,c+\delta))$
 $\cdot f(x) \geq 0 \text{ for } x \in (c-\delta,c+\delta)$
 $\cdot f(x) \leq 0 \text{ for } x \in (c,c+\delta)$
then f has a valative maximum at c .
(b) If $\exists \delta > 0$ s.t. $(c-\delta, c+\delta) \leq (a,b)$
 $\cdot f(x) \leq 0 \text{ for } x \in (c-\delta,c+\delta)$
 $\cdot f(x) \leq 0 \text{ for } x \in (c-\delta,c+\delta)$
 $\cdot f(x) \geq 0 \text{ for } x \in (c-\delta,c+\delta)$
 $\cdot f(x) \geq 0 \text{ for } x \in (c,c+\delta)$
then f has a valative minimum at c .

$$Pf: (a) \quad \text{If } x \in (c-\delta, c), \text{ then Mean Value Thm} \\ \left(applying \quad \text{to } f = [x, c] > R \right) \text{ implies } \exists c_x \in (x, c) \quad s.t. \\ f(c) - f(x) = f'(c_x)(c-x) \\ \geq 0 \quad \left(since \quad f' \ge 0 \quad m \quad (c-\delta, c) \right) \end{aligned}$$

(b)

Further Applications of the Mean Value Theorem Examples 6.2.9

(a) Rolle's Thm 6.2.3 can be used to "locate" roots of a function. In fact, Rolle's Thm => 9=f' always has a voot between any two zeros of f (provided f is differentiable & etc.) explicit eq: $g(x) = cox = (sinx)^{\prime}$ sin x = 0 for x = nit for $n \in \mathbb{Z}$. Rolle's => cox has a root in (nti, (n+1) Ti), HNEZ. (eg. of Bessel functions In is omitted) (b) Using Mean Value Therrow for approximate calculations & error estimates, lg. Approximate J105. Applying Mean Value Thm to f(x) = JX on [100, 105], f(105) - f(100) = f(c)(105 - 100) fa some $c \in (100, 105)$. In eg. 6.1,10 (d), we've seen that $f(c) = \frac{1}{2\sqrt{c}}$. $\int \sqrt{105} - \sqrt{100} = \frac{5}{2.1c}$ for fome $C \in (100, 105)$

$$\Rightarrow 10 + \frac{5}{2\sqrt{105}} < \sqrt{105} < 10 + \frac{5}{2\sqrt{105}} = 10 + \frac{5}{2 \cdot 10} = 10.25$$
And $\sqrt{105} < \sqrt{121} = 11 \Rightarrow \sqrt{105} > 10 + \frac{5}{2 \cdot 11}$
Hence $\frac{205}{22} < \sqrt{105} < \frac{41}{4}$
(Of course, the estimate can be improved by more careful analysis)
$$\frac{\text{Examples } 6.2.10 \text{ (Inequalities)}}{(20) \quad e^{X} \ge 1+X}, \forall X \in \mathbb{R} \text{ and "equality} \iff X = 0".$$
Pf: We will use the fact that
 $f(x) = e^{X}$ these derivative $f'(x) = e^{X}, \forall X \in \mathbb{R}$
 $(and f'(0) = 1)$
 $and \quad e^{X} > 1 \text{ for } X > 0$
 $e^{X} < 1 \text{ for } X < 0$.
(To be defined and proved in §8.3.)
If $X = 0$, then $e^{X} = 1 = 1+X$. We're done.
If $X > 0$, applying MVT (Mean Value Thin) to
 $f(x) = e^{X}$ on To, xJ ,

we have
$$c \in (0, x)$$
 such that
 $e^{x} - e^{0} = e^{c}(x - 0)$
 $\therefore e^{x} - 1 > x$.
If $x < 0$, applying MVT to $f(x) = e^{x}$ on $[x, 0]$,
use have $c \in (x, 0)$ such that
 $e^{0} - e^{x} = e^{c}(0 - x)$
 $1 - e^{x} < -x$ $(e^{c} < 1, -x > 0)$
 $\therefore e^{x} > 1 + x, \forall x < 0$.

Finally, one observes, in both cases, the inequality is strict. So "equality $\Leftrightarrow x=0^{\prime\prime}$.

(b)
$$-x \leq aux \leq x$$
, $\forall x \geq 0$.

Pf: The inequalities are clear for X = 0. Let X > 0. Consider g(x) = sin x on [0, x]. Then MVT implies $\exists c \in (0, x) s.t.$ sin x - sin 0 = (cooc)(x - 0)

Using $-1 \le \cos(\le 1)$ and $\sin 0 = 0$, we have $-x \le \sin x \le x$ (as x > 0)