Thm 6.1.8 Let
$$\cdot I \subseteq \mathbb{R}$$
 be an interval
 $\cdot f: I \Rightarrow \mathbb{R}$ be strictly monotone and continuous.
 $\cdot J = f(I)$ and $g: J \Rightarrow \mathbb{R}$ be the strictly
monotone & continuous function inverse to f .
If f is differentiable at $c \in I$ and $f'(c) \neq 0$, then g is
differentiable at $d = f(c)$ and
 $g'(d) = \frac{1}{f'(c)} = \frac{1}{f'(g(d))}$

Note
$$f'(c) \neq 0$$
 doesn't follow from f being structly monotone:
eg. $f(x) = x^3$ is structly monotone, but $f'(0) = 0$.
In this case, the inverse $g(x) = x^{\frac{1}{3}}$ is not differentiable at $x=0$.

Pf: Since f is differentiable at x=c, Carathéodory's Thur 6.1.5

$$\Rightarrow \exists \varphi: I \Rightarrow R$$
 with φ continuous at c such that
 $\int f(x) - f(c) = \varphi(x)(x-c), \forall x \in I, and$
 $\varphi(c) = f'(c)$

Since $f(c) \neq 0$ and q is continuous at c, $\exists \delta > 0$ such that $q(x) \neq 0$, $\forall x \in (c-\delta, c+\delta) \cap I$.

let
$$U = \int ((c \cdot J, c \cdot \delta \cdot h \cdot h \cdot I) C J$$

Then the investe function g satisfies $\int (g(y)) = y$, $\forall y \in U$.
Howe $y - d = \int (g(y)) - \int (c) = \varphi(g(y)) (g(y) - c)$
 $= \varphi(g(y)) (g(y) - g(d_{J})) \qquad \begin{pmatrix} d = \int (c_{J}) e^{tT} \\ \Rightarrow c = g(d_{J}) \end{pmatrix}$
Since $g(y) \in (c \cdot F, c + \delta \cdot h \cdot I)$, $\forall y \in U$,
we have $\varphi(g(y)) \neq 0$.
Hence $g(y) - g(d) = \frac{1}{(\varphi(g(y)))} (y - d)$.
Since g is continuous on J and φ is cartines at $c = g(d) \notin \pm 0$,
 $/\varphi_{0}g$ is continuous of d .
Then by Carathéodory's Thu $6.1.5$, g is differentiable at $d = f(c)$
and $g'(d) = \frac{1}{\varphi(g(d))} = \frac{1}{\varphi(c)} = \frac{1}{f(c)} \cdot \chi$
Thus 61.9 (Same notations as in Them $6.1.8$)
Let $f : I \Rightarrow R$ be shict monotone (no need to assume continuity).
If f is differentiable on I and $f(x) \pm 0$, $\forall x \in I$. Then the
invest function g is differentiable an $J = f(I)$ and
 $g' = \frac{1}{f' \circ g}$

Remark on simplified notations: Usually, we write y = f(x) and x = g(y) for functions inverse to each other. Then the famula in Thum 6.1.9 can be written as

$$g'(y) = \frac{1}{(f' \circ g)(y)} \quad \forall y \in J$$

 $\sigma \qquad (3_{0}-7)(x) = \frac{1}{(x)} \qquad A x \in I$

In this notation, me often simply write

$$g'(y) = \frac{1}{S(x)}$$

without explicitly stated that y=f(x) & x=g(y)

eg 6.1.10
(a)
$$f(x) = x^{5} + 4x + 3$$
 gives a strictly increasing (why?) and
cartinuas function on IR (and $f(R) = |R| |w||^2$)
 $f'(x) = 5x^4 + 4 \ge 4 > 0$.
Therefore, Thurb.1.8 $\Rightarrow g = f^{-1}$ is differentiable $\forall y \in R$.
And for example, at $x = 1$, $g'(R) = g'(f(n)) = \frac{1}{f'(n)} = \frac{1}{9}$

(b)
$$f = [0, \infty) \rightarrow [0, \infty)$$
 given by $f(x) = x^n$ where $n = 2, 4, 6, \cdots$
Then f is strictly increasing curtainers on $[0, \infty)$
Note that $f([0, \infty)) = [0, \infty)$. The inverse function g
defines on $[0, \infty)$ and is strictly increasing and cartinuous.
Since $f(x) = nx^{n-1} > 0$, $\forall x > 0$, $a f((0, \infty)) = (0, \infty)$,
 g is differentiable $\forall y > 0$ and
 $g'(y) = \frac{1}{f'(g(y))} = \frac{1}{n(g(y))^{n-1}} = \frac{1}{n(y^{\frac{1}{n}})^{n-1}} = \frac{1}{n(y^{\frac{1}{n}})^{n-1}}$
(The inverse is denoted by $g(y) = y^{\frac{1}{n}}$, $\forall y \in [0, \infty)$.)

Note: 9 is not differentiable at y=0 (one side derivative doesn't exists. Onvitted !. But the argument is the same as in the vext example.)

(C) $n=3,5,7,\cdots$. $F(x)=x^n$, $\forall x \in \mathbb{R}$, is strictly increasing & criticinaus. Inverse is $G(y)=y^n$, $\forall y \in \mathbb{R}$. As in example (b) above, G is differentiable $\forall y \neq 0$ and $G(y)=\frac{1}{n}y^{\frac{1}{n}-1}$ (check!) And again, G is not differentiable at y=0

If Suppose that G is differentiable at y=0.
Then consider the composite function
$$y = F(G(y))$$
.
Since $G(y)=0$ and $F(0)=0$ exists.
Chain rule implies $1 = \frac{dy}{dy} = \frac{F(G(x))}{y} \frac{G(x)}{dx + y}$
which is a contradiction. .: $G(x)$ doesn't exist x
(d) Recall if $r = \frac{m}{n} > 0$, $m, n \in \{1, 3, 3, \dots, 5\}$, then
 $x^{r} = x^{\frac{m}{n}}$ is defined as $(x^{\frac{1}{n}})^{m}$, $\forall x \ge 0$.
Therefore, the function $R : [0, \infty) \Rightarrow [0, \infty)$ defined by
 $R(x) = x^{t}$, $\forall x \ge 0$
is a composite function $R = f \circ g$ where
 $g(x) = x^{\frac{1}{n}}$, $x \ge 0$ (the inverse dimmed in eg(b))
and $f(x) = x^{m}$, $x \ge 0$
(i.e. $R(x) = x^{r} = (x^{\frac{1}{n}})^{m} = f(g(x))$, $\forall x \in [0, \infty)$)
Then Chain rule $\Rightarrow \forall x \in [0, \infty)$

 $(x^r)' = r x^{r-1}, \forall x \ge 0, \text{ true for all rational } r > 0.$

(e) All x is shirtly inneasing on
$$I = I - \frac{\pi}{2}, \frac{\pi}{2}$$
]
and maps I to $J = E - I, IJ$.
 \Rightarrow inverse exists, and we denote it by
Arcoin: $E - I, IJ \rightarrow I - \frac{\pi}{2}, \frac{\pi}{2}J$
ie. If $x \in I - \frac{\pi}{2}, \frac{\pi}{2}J \ge y \in E - I, IJ$, then
 $y = ain \chi \iff x = Arcain Y$.
Note that $Dain x = (ao x \neq 0 \text{ fn } x \in (-\frac{\pi}{2}, \frac{\pi}{2}) \text{ (no end pts.)}$
Thue $6, I.8 \Longrightarrow$
 $D \operatorname{Arcoin} Y = \frac{1}{Dain x} = \frac{1}{(ao x)} = \frac{1}{\sqrt{1 - ain^2 x}}$
 $= \frac{1}{\sqrt{1 - y^2}}, \quad \forall y \in (-I, I)$

(Note: DArcoing cloes not exist for y=±1. Check!)