MATH 2060A Mathematical Analysis II 2024-25 Term 1 Suggested Solution to Homework 7

8.1-14 Show that if 0 < b < 1, then the convergence of the sequence in Exercise 4 is uniform on the interval [0, b], but is not uniform on the interval [0, 1].

Solution. Let (f_n) be the sequence of functions considered in Exercise 4, and let f be its limit. Since $0 \le f_n(x) = \frac{x^n}{1+x^n} \le \frac{b^n}{1+0} = b^n$ for any $x \in [0, b]$, we have

 $||f_n - 0||_{[0,b]} \le b^n \quad \text{for all } n \in \mathbb{N}.$

As 0 < b < 1, we have $\lim(b^n) = 0$ and so $\lim ||f_n - 0||_{[0,b]} = 0$. Therefore (f_n) converges uniformly to $f \equiv 0$ on [0, b].

On the other hand, for all $n \in \mathbb{N}$,

$$||f_n - f||_{[0,1]} \ge |f_n(2^{-1/n}) - f(2^{-1/n})| = \left|\frac{1/2}{1+1/2} - 0\right| = \frac{1}{3}.$$

So $||f_n - f||_{[0,1]} \neq 0$ as $n \to \infty$. Therefore (f_n) does not converge uniformly to f on [0,1]. \Box

8.1-22 Show that if $f_n(x) \coloneqq x + 1/n$ and $f(x) \coloneqq x$ for $x \in \mathbb{R}$, then (f_n) converges uniformly on \mathbb{R} to f, but the sequence (f_n^2) does not converge uniformly on \mathbb{R} . (Thus the product of uniformly convergent sequences of functions may not converge uniformly.)

Solution. Since $||f_n - f||_{\mathbb{R}} = 1/n \to 0$ as $n \to \infty$, (f_n) converges uniformly on \mathbb{R} to f. On the other hand, for all $n \in \mathbb{N}$,

$$f_n^2(x) - f^2(x) = \left(x + \frac{1}{n}\right)^2 - x^2 = \frac{2x}{n} + \frac{1}{n^2}$$
 for any $x \in \mathbb{R}$,

so that

$$||f_n^2 - f^2||_{\mathbb{R}} \ge |f_n^2(n) - f^2(n)| = 2 + \frac{1}{n^2} \ge 2.$$

Therefore (f_n^2) does not converge uniformly to f^2 on \mathbb{R} . And so (f_n^2) does not converge uniformly on \mathbb{R} because f^2 is the pointwise limit of (f_n^2) .

8.1-23 Let f(n), (g_n) be sequences of bounded functions on A that converge uniformly on A to f, g, respectively. Show that (f_ng_n) converges uniformly on A to fg.

Solution. Since f(n), (g_n) converge uniformly on A to f, g, respectively, we have for any $\varepsilon > 0$, there is $N = N_{\varepsilon} \in \mathbb{N}$ such that if $n \ge N$, then

$$||f_n - f||_A < \varepsilon$$
 and $||g_n - g||_A < \varepsilon$. (1)

First we show that f, g are bounded on A. By taking $\varepsilon = 1$, there is $N_1 \in \mathbb{N}$ such that if $x \in A$, then

$$|f(x)| \le |f_{N_1}(x)| + |f_{N_1}(x) - f(x)| \le ||f_{N_1}||_A + 1,$$

and

$$|f_n(x)| \le |f(x)| + |f_n(x) - f(x)| \le ||f_{N_1}||_A + 2, \text{ for } n \ge N_1$$

Thus we can find M > 0 such that $||f||_A, ||f_n||_A \leq M$ for all $n \geq N_1$. Similarly we can find M' > 0 such that $||g||_A, ||g_n||_A \leq M'$ for all $n \geq N_1$.

Now, by applying (1) to an arbitrary $\varepsilon > 0$, there exists $N_{\varepsilon} \in \mathbb{N}$ such that if $n \ge N_{\varepsilon}$ and $x \in A$, we have

$$|f_n(x)g_n(x) - f(x)g(x)| \le |f_n(x)||g_n(x) - g(x)| + |g(x)||f_n(x) - f(x)|$$

$$\le M\varepsilon + M'\varepsilon.$$

So $||f_ng_n - fg||_A \leq (M + M')\varepsilon$ for all $n \geq N_{\varepsilon}$. Therefore (f_ng_n) converges uniformly on A to fg.