MATH 2060A Mathematical Analysis II 2024-25 Term 1 Suggested Solution to Homework 6

7.2-10 If f and g are continuous on [a, b] and if $\int_a^b f = \int_a^b g$, prove that there exists $c \in [a, b]$ such that f(c) = g(c).

Solution. Suppose $f(x) \neq g(x)$ for any $x \in [a, b]$. Then the Intermediate Value Theorem implies that either f - g > 0 or g - f > 0 on [a, b]. Together with $\int_{a}^{b} (f - g) = \int_{a}^{b} f - \int_{a}^{b} g = 0$, Exercise 7.2-8 (see HW5) implies that f - g = 0 on [a, b], which contradicts the assumption at the beginning.

7.2-12 Show that $g(x) \coloneqq \sin(1/x)$ for $x \in (0,1]$ and $g(0) \coloneqq 0$ belongs to $\mathcal{R}[0,1]$.

Solution. Clearly $|g(x)| \leq 1$ for all $x \in [0, 1]$.

Let $\varepsilon > 0$. Choose $c \in (0, 1)$ such that $c < \varepsilon/4$. On [c, 1], $g(x) = \sin(1/x)$ is continuous, and hence $g \in \mathcal{R}[c, 1]$ by Proposition 2.13. By Theorem 2.10, there is a partition $P : c = x_1 < \cdots < x_n = 1$ on [c, 1] such that

$$0 \le U(g, P) - L(g, P) = \sum_{i=1}^{n} \omega_i(g, P) \Delta x_i < \varepsilon/2,$$

where $\omega_i(g, P) \coloneqq \sup\{|g(x) - g(x')| : x, x' \in [x_{i-1}, x_i]\}$. Now $P' : 0 \rightleftharpoons x_0 < x_1 = c < x_2 < \cdots < x_n = 1$ is a partition on [0, 1] that satisfies

$$0 \le U(g, P') - L(g, P') = \sum_{i=1}^{n} \omega_i(g, P') \Delta x_i$$
$$= \sup\{|g(x) - g(x')| : x, x' \in [0, c]\}(c - 0) + \sum_{i=2}^{n} \omega_i(g, P) \Delta x_i$$
$$< 2(\varepsilon/4) + \varepsilon/2 = \varepsilon.$$

By Theorem 2.10 again, $g \in \mathcal{R}[0, 1]$.

7.2-15 If f is bounded and there is a finite set E such that f is continuous at every point of $[a, b] \setminus E$, show that $f \in \mathcal{R}[a, b]$.

Solution. Let $\varepsilon > 0$ be given. Set $M = \sup |f(x)|$. Since E is finite, we can cover E by finitely many disjoint intervals $[u_j, v_j] \subseteq [a, b]$ such that $\sum |v_j - u_j| < \varepsilon$. Furthermore, we can place these intervals in such a way that every point of $E \cap (a, b)$ lies in the interior of some $[u_j, v_j]$. Remove the segments (u_j, v_j) from [a, b]. The remaining set K is compact. Hence f is uniformly continuous on K, and there exists $\delta > 0$ such that $|f(s) - f(t)| < \varepsilon$ if $s, t \in K$ and $|s - t| < \delta$. Now form a partition $P : a = x_0 < x_1 < \cdots < x_n = b$ such that

Now form a partition T , $a = x_0 < x_1 < \cdots < x_n = 0$ such

- every u_j and v_j occur in P,
- no point of any segment (u_j, v_j) occurs in P,
- $\Delta x_i := x_i x_{i-1} < \delta$ if x_{i-1} is not one of the u_i .

Note that if $[x_{i-1}, x_i] \cap S = \emptyset$, then $\omega_i(f, P) \leq \varepsilon$; while if $[x_{i-1}, x_i] \cap S \neq \emptyset$, then $[x_{i-1}, x_i] = [u_j, v_j]$ for some j and $\omega_i(f, P) \leq 2M$. Hence,

$$\sum_{i=1}^{n} \omega_i(f, P) \Delta x_i = \sum_{\substack{i: [x_{i-1}, x_i] \cap S = \emptyset}} \omega_i(f, P) \Delta x_i + \sum_{\substack{i: [x_{i-1}, x_i] \cap S \neq \emptyset}} \omega_i(f, P) \Delta x_i$$
$$\leq \varepsilon \sum_{\substack{i: [x_{i-1}, x_i] \cap S = \emptyset}} \Delta x_i + 2M \sum_j (v_j - u_j)$$
$$\leq \varepsilon (b-a) + 2M \varepsilon.$$

By Theorem 2.10, $f \in \mathcal{R}[a, b]$.