MATH 2060A Mathematical Analysis II 2024-25 Term 1 Suggested Solution to Homework 3

6.3-2 In addition to the supposition of the preceding exercise, let g(x) > 0 for $x \in [a, b]$, $x \neq c$. If A > 0 and B = 0, prove that we must have $\lim_{x \to c} f(x)/g(x) = \infty$. If A < 0 and B = 0, prove that we must have $\lim_{x \to c} f(x)/g(x) = -\infty$.

Solution. Suppose A > 0 and B = 0. Let $\alpha > 0$. By the assumption, there exists $\delta > 0$ such that for all $x \in [a, b] \cap V_{\delta}(c) \setminus \{c\}$, we have

$$f(x) > A/2 > 0$$
, and $0 < g(x) < \frac{A/2}{\alpha}$,

which implies that

$$\frac{f(x)}{g(x)} > \alpha.$$

Therefore $\lim_{x \to c} f(x)/g(x) = \infty$.

If A < 0 and B = 0, the limit follows from above by considering -f.

6.3-5 Let $f(x) \coloneqq x^2 \sin(1/x)$ for $x \neq 0$, let $f(0) \coloneqq 0$, and let $g(x) \coloneqq \sin x$ for $x \in \mathbb{R}$. Show that $\lim_{x \to 0} f(x)/g(x) = 0$ but $\lim_{x \to 0} f'(x)/g'(x)$ does not exist.

Solution. Note that, for $x \neq 0$,

$$\left|\frac{f(x)}{g(x)}\right| = |x| \left|\sin(1/x)\right| \left|\frac{x}{\sin x}\right| \le |x|.$$

It then follows from Squeeze theorem that $\lim_{x\to 0} f(x)/g(x) = 0$.

On the other hand, $\lim_{x\to 0} f'(x)/g'(x) = \lim_{x\to 0} \frac{2x\sin(1/x) - \cos(1/x)}{\cos x}$ does not exist by applying sequential criterion to the sequences $(x_n), (y_n)$, where

$$x_n \coloneqq \frac{1}{2n\pi}$$
 and $y_n \coloneqq \frac{1}{(2n+1)\pi}$.

6.4-4 Show that if x > 0, then $1 + \frac{1}{2}x - \frac{1}{8}x^2 \le \sqrt{1+x} \le 1 + \frac{1}{2}x$.

Solution. Let $f(x) = \sqrt{1+x}$. Then, for any x > -1,

$$f'(x) = \frac{1}{2\sqrt{1+x}}, \quad f''(x) = -\frac{1}{4(1+x)^{3/2}}, \quad f'''(x) = \frac{3}{8(1+x)^{5/2}}.$$

Fix x > 0. By Taylor's Theorem, there exists $c_1 \in (0, x)$ such that

$$f(x) = f(0) + f'(0)(x - 0) + \frac{f''(c_1)}{2!}(x - 0)^2$$
$$= 1 + \frac{1}{2}x - \frac{1}{8(1 + c_1)^{3/2}}x^2.$$

Since $-\frac{1}{8(1+c_1)^{3/2}}x^2 < 0$, we have $\sqrt{1+x} \le 1 + \frac{1}{2}x$. Similarly, there exists $c_2 \in (0, x)$ such that

$$f(x) = f(0) + f'(0)(x - 0) + \frac{f''(0)}{2!}(x - 0)^2 + \frac{f'''(c_2)}{3!}(x - 0)^3$$
$$= 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16(1 + c_2)^{5/2}}x^3.$$

Since $\frac{1}{16(1+c_2)^{5/2}}x^3 > 0$, we have $1 + \frac{1}{2}x - \frac{1}{8}x^2 \le \sqrt{1+x}$.