Math 2058, HW 1. Due: 24 Sep 2022, before 11:59 pm

- (1) Using the Axioms to show that
 - (a) for all $a \in \mathbb{R} \setminus \{0\}, 1/(1/a) = a$.
 - (b) If a > b > 0, then $0 < a^{-1} < b^{-1}$.
- (2) If A is a non-empty subset of \mathbb{R} such that A is bounded from above. If we denote $-A = \{-a : a \in A\}$, show that $\inf(-A)$ exists and equals to $-\sup A$.
- (3) Show that if A, B are bounded subsets of \mathbb{R} . Show that

$$\sup(A+B) = \sup A + \sup B$$

where $A + B = \{a + b : a \in A, b \in B\}$. Do we have

 $\sup A \cdot \sup B = \sup(A \cdot B)$

where $A \cdot B = \{ab : a \in A, b \in B\}$? Justify your answer.

(4) Let X be a non-empty set and $f, g: X \to \mathbb{R}$ be two real valued function with bounded ranges. Show that

 $\sup\{f(x) + g(x) : x \in X\} \le \sup\{f(x) : x \in X\} + \sup\{g(x) : x \in X\}.$

Give an example showing that the inequality can be a strict inequality.

(5) Show by using completeness that there is $x \in \mathbb{R}$ so that x > 0and $x^3 + x = 5$. Show that such x is unique.