THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2058 Honours Mathematical Analysis I Tutorial 8 Due Date: November 8, 2024

- 1. Give an example of a function $f : [0,1] \to \mathbb{R}$ that is discontinuous at every point of [0,1] but that |f| is continuous on [0,1].
- 2. (Exercises 5.2.5-5.2.6 of [BS11])
 - (a) Let f, g be defined on \mathbb{R} and let $c \in \mathbb{R}$. Suppose that $\lim_{x \to c} f = b$ and that g is continuous at b. Show that $\lim_{x \to c} g \circ f = g(b)$.
 - (b) Does the conclusion hold if g is not continuous at b? Give an example showing otherwise.
- 3. Suppose $f: [0,1] \to \mathbb{R}$ is a continuous function such that $f([0,1]) \subset \mathbb{Q}$. Show that f is a constant function.
- 4. Suppose $f : \mathbb{R} \to \mathbb{R}$ is a continuous function such that

 $f(m2^{-n}) = m2^{-n}$

for all $m \in \mathbb{Z}$, $n \in \mathbb{N}$. Show that f(x) = x for all $x \in \mathbb{R}$.

1. Give an example of a function $f : [0, 1] \to \mathbb{R}$ that is discontinuous at every point of [0, 1] but that |f| is continuous on [0, 1].

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \cap [0, 1] \\ -1 & \text{if } x \in \mathbb{R} | D \cap [0, 1] \end{cases}$$

$$Clearly | f| = 1 & \text{mel so } | f| \text{ is } cts.$$

$$let \ ce [0, 1], \quad \text{Then } \exists (x_n) \in \mathbb{Q} \cap [0, 1], \quad st. \ x_n = c, \ x_n \neq c, \\ \exists (y_n) \in \mathbb{R} | Q \cap [0, 1] \text{ st. } y_n = c, \ y_n \neq c \end{cases}$$

$$by \ clensity \ of \ Q \ in \ \mathbb{R} \ and \ \mathbb{R} \setminus \mathbb{Q} \ in \ \mathbb{R}, \\But \ f(x_n) = 1 \ \neq -1 = f(y_n), \\So \ by \ sequential criterion \ for \ continuity, \ fis \ nit \ cts \ atc. \end{cases}$$

- 2. (Exercises 5.2.5-5.2.6 of [BS11])
 - (a) Let f, g be defined on \mathbb{R} and let $c \in \mathbb{R}$. Suppose that $\lim_{x \to c} f = b$ and that g is continuous at b. Show that $\lim_{x \to c} g \circ f = g(b)$.
 - (b) Does the conclusion hold if g is not continuous at b? Give an example showing otherwise.

P(i) a) let
$$\varepsilon > 0$$
 be given. Then since g is cts at b, $\exists d > 0$
st. for all $|x-b| < d$, we have $|g(x) - g(b)| < \varepsilon$.
Then since $\lim_{x \to c} f = b$, for $\varepsilon' = d$, there is a $d' > 0$ st.
if $0 < |x-c| < d'$ we have theat $|f(x)-b| < \varepsilon' = d$.
So chaining these together, we have these $f(f = 0 < |x-c| < d', |f(x)-b| < \varepsilon' = \delta =)$ $|g(f(x)) - g(b)| < \varepsilon$.
 $|f(x)-b| < \varepsilon' = \delta =)$ $|g(f(x)) - g(b)| < \varepsilon$.
 $|g(of)(x) - g(b)| < \varepsilon$.
 $|g(of)(x) - g(b)| < \varepsilon$.
Then g is not ets of 1. Set $f(x) = x + 1$ for all $x \in R$.
Then $\lim_{x \to 0} f = 1$.
 $(gof)(b) = g(f(o)) = g(1) = 0$.
let (x_n) be any sequence in $R = t$. $x_n \neq 0$, and $x_n \to 0$.
 $(gof)(c_n) = g(f(x_n)) = g(x_n + 1) = 2$.
So clearly $\lim_{x \to c} (gof)(b) \neq (gof)(c)$.

3. Suppose $f:[0,1] \to \mathbb{R}$ is a continuous function such that $f([0,1]) \subset \mathbb{Q}$. Show that f is a constant function.

If: Sps f is not constant. Then along,
$$\exists x_1 < x_2 \in [0,1]$$
,
s.t. $f(x_1) = f(x_2)$. By density of inationals in R, we can
find an $x \in \mathbb{R} \setminus \mathbb{Q} \setminus [0,1]$ s.t. $f(x_1) < \alpha < f(x_2)$.
Since fix cts, by intermediate value theorem, $\exists c \in [0,1]$
s.t. $f(c) = Q_1$, contradiction. /c.

4. Suppose $f:\mathbb{R}\to\mathbb{R}$ is a continuous function such that

$$f(m2^{-n}) = m2^{-n}$$

for all $m \in \mathbb{Z}$, $n \in \mathbb{N}$. Show that f(x) = x for all $x \in \mathbb{R}$.

If: First show
$$S = \sum m2^{-u}$$
, $m \in \mathbb{Z}$, $n \in \mathbb{N}$ is dense in \mathbb{R} .
Let $n < y \in \mathbb{R}$. WTS $\exists s \in S$ st. $x < s < y$.
Since $y - x > 5$. by AP , $\exists n \in \mathbb{N}$ st. $\downarrow < \downarrow < < y < -x^{-u}$
So $2^{u}y - 2^{u}x > 1$. So $\exists m \in \mathbb{Z}$ st.
 $2^{u}x < m < 2^{u}y$.
So taily $s = m2^{-u}$, we have $k < s < y$.
So taily $s = m2^{-u}$, we have $k < s < y$.
So taily $s = m2^{-u}$, we have $k < s < y$.
Now then $f(s) = x$ for all $k \in \mathbb{R}$. By density of S in \mathbb{R} ,
for any $n \in \mathbb{N}$; there is an $x_n \in S$ st.
 $x < x_n < x + \frac{1}{n}$.
Checky $x_n \neq x$ for all $n \in \mathbb{N}$ and $x_n \to x$.
Then by sequential criterion for continuity.
 $f(x) = f(\lim_{n \to \infty} x_n) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} x_n = x$.