THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2058 Honours Mathematical Analysis I Tutorial 5 Date: 18 October, 2024

- 1. Let (x_n) be a bounded sequence of real numbers and let $s \in \mathbb{R}$. Show that $\overline{\lim} x_n \leq s$ if and only if for any $\varepsilon > 0$, there is an $N \in \mathbb{N}$ such that $x_n < s + \varepsilon$ for all $n \geq N$.
- 2. Show the following using both the closed and bounded definition of a compact set and the open cover definition of a compact set:
 - (a) if A is non-empty and compact, then $\sup A$ exists and $\sup A \in A$;
 - (b) if A is compact and if $B \subset A$ is closed, then B is compact. Hint: the complement of a closed set is open.
- 3. (Cantor's Intersection Theorem) Prove the following generalization of the Nested Interval Theorem for compact sets: Suppose $\{K_n\}_{n=1}^{\infty}$ is a sequence of nested nonempty compact subsets of \mathbb{R} . Then $\bigcap_{n=1}^{\infty} K_n \neq \emptyset$.

1. Let (x_n) be a bounded sequence of real numbers and let $s \in \mathbb{R}$. Show that $\lim x_n \leq s$ if and only if for any $\varepsilon > 0$, there is an $N \in \mathbb{N}$ such that $x_n < s + \varepsilon$ for all $n \geq N$.

$$Pf: \lim_{n} \sup_{x_{n}} x_{n} = \inf_{n} \sup_{k \ge n} x_{k}$$

$$\Rightarrow First sps \lim_{n} \sup_{x_{n}} x_{n} \le s \quad \text{then by we here}$$

$$\inf_{n} \sup_{k \ge n} \sum_{k \le n} \sum_{k \le s} \sum_{n \le s}$$

So by property of inf, UEDO, ENEW, st. Sup XK<StE. Suice sup is an unb., this means XK<StE for all KEN. (=: Suppose for given EDO, EN r.f. XK<StE for all KZN. So StE IS on u.b. of the set EXL: KZNE. By sup, here

So tailing inf on both rocles gives inf sup $X_{k} \leq S$.

- 2. Show the following using both the closed and bounded definition of a compact set and the open cover definition of a compact set:
 - (a) if A is non-empty and compact, then $\sup A$ exists and $\sup A \in A$;
 - (b) if A is compact and if $B \subset A$ is closed, then B is compact. *Hint: the complement of a closed set is open.*

Ellenguence A: Un = U (-20, sup A-t) = (-20, supA).) A. Since A is cpt, there are k1, ---, kN s.t. $A \subseteq \bigcup_{l=1}^{\infty} (-\infty, \sup_{l=1}^{\infty} A - \frac{1}{k_l})$ 2 supA By restaluess, we have A = (-∞, sup A - 1 Waxsk, -, kN}) But this contracticts supremen of A

b) Closed and bonded! Since BEA, Bis bold. Bis closed by ussception, so Bis ept. Open couer: let [lifies de en gen coner of B. A Then { this UBC is an gen cons of A Note: BC is open bre. B is closect. Then since A is opt, A admits a finite subcomer, As lly v - vlly v Be BS Un u-- ullin so Biscot.

3. (Cantor's Intersection Theorem) Prove the following generalization of the Nested Interval Theorem for compact sets: Suppose $\{K_n\}_{n=1}^{\infty}$ is a sequence of nested nonempty compact subsets of \mathbb{R} . Then $\bigcap_{n=1}^{\infty} K_n \neq \emptyset$.