THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2058 Honours Mathematical Analysis I Tutorial 4 Date: 4 October, 2024

1. Find the limits of the following sequences defined by the recurrence relations:

(a)
$$x_1 := \frac{3}{2}, x_{n+1} := 2 - \frac{1}{x_n};$$

(b) $x_1 := 1, x_{n+1} := \sqrt{2x_n}$

- 2. (Exercise 3.4.12 of [BS11]) Show that if $\{x_n\}$ is unbounded, then there exists a subsequence $\{x_{n_k}\}$ such that $\lim \left(\frac{1}{x_{n_k}}\right) = 0$.
- 3. (Exercise 3.4.14 of [BS11]) Suppose $\{x_n\}$ is a sequence which is bounded from above. Let $s = \sup\{x_n\}$. Show that either $s = x_N$ for some $N \in \mathbb{N}$ sufficiently large, or that there is a subsequence x_{n_k} so that $x_{n_k} \to s$ as $k \to +\infty$.
- 4. (Exercise 3.4.15 of [BS11]) Let $\{I_n := [a_n, b_n]\}$ be a nested sequence of closed bounded intervals. For each $n \in \mathbb{N}$, let $x_n \in I_n$. Use the Bolzano-Weierstrass Theorem to prove the Nested Intervals Theorem.

Currencement: HWZ ported on course melosite. Due \$/10 2359 on Gradescope. Quiz returned. Total out of 30 pts.

(a)
$$x_1 := \frac{3}{2} \cdot x_{n+1} := 2 - \frac{1}{x_n}$$
;
(b) $x_1 := 1, x_{n+1} := \sqrt{2x_n}$
Pf b): We will then $x_n \in 2$ and $x_n \leq x_{n+1}$ for all netWay midlethin,
Base case $\cdot x_i < l < 2$, $x_2 = \sqrt{2} > l = x_i$.
Itt: Sps $x_k \in 2$ and $x_k \leq x_{k-1}$ for some kith.
Barel: $x_{k+1} = \sqrt{2x_k} \leq \sqrt{2\cdot 2} = 2$.
Junearity: $x_{k+2} = \sqrt{2x_{k+1}} \geq \sqrt{2x_k} - x_{k+1}$
So since $lx_n f$ is bounded above and increasing, we conclude by
Theorem 2.13 (Monotone convergence Theorem) that x_n converges in R
to some limit, say L .
Final L^*
 $L = \sqrt{2x_n}$
 $L = \sqrt{2}$.
So $L = 2$.

2. (Exercise 3.4.12 of [BS11]) Show that if $\{x_n\}$ is unbounded, then there exists a subsequence $\{x_{n_k}\}$ such that $\lim \left(\frac{1}{x_{n_k}}\right) = 0$.

3. (Exercise 3.4.14 of [BS11]) Suppose $\{x_n\}$ is a sequence which is bounded from above. Let $s = \sup\{x_n\}$. Show that either $s = x_N$ for some $N \in \mathbb{N}$ sufficiently large, or that there is a subsequence x_{n_k} so that $x_{n_k} \to s$ as $k \to +\infty$.

4. (Exercise 3.4.15 of [BS11]) Let $\{I_n := [a_n, b_n]\}$ be a nested sequence of closed bounded intervals. For each $n \in \mathbb{N}$, let $x_n \in I_n$. Use the Bolzano-Weierstrass Theorem to prove the Nested Intervals Theorem.