MATH2050C Assignment 11

Deadline: April 8 | 2025.
Hand in: 5.4 no. 3, 4, 7; Suupl. Problems no 1, 2.

Section 5.4 no. 3, 4, 6, 7, 8, 10, 15.
Supplementary Problems

1. Let function f on A satisfy the condition: There is some constant C' and « > 0 such that
|f(z) — f(c)] < Clx —¢|* for all z,c¢ € A. Show that f is uniformly continuous on A. (It
is called the Lipschitz condition when oo = 1.)

2. Let f € C[1,00) satisfy lim,,o f(z) = L € R. Show that f is uniformly continuous on
[1,00).

3. Let f be a uniformly continuous function on [0, c0). Show that there is a constant C' such
that |f(z)| < C(1 + z).

See next page
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Uniform Continuity of Functions

Let f be continuous on some nonempty set A in R. When f is continuous at some ¢ € A, it
means for each £ > 0, there is some § such that |f(x) — f(c¢)| < e for all z € A, |x — ¢| < . Here
0 in general depending on ¢ and . Now, f is said to be uniformly continuous on E C A if for
each € > 0, there is a d such that |f(z) — f(¢)| <eforallz € E, |z —¢| <.

Example 11.1 The function f(z) = 1/ is continuous but not uniformly continuous on (0, c0).
Let ¢ € (0,00) The preimage of f on (f(c) — ¢, f(c) +¢) is (¢/(1 + ec),¢/(1 — ec)). Since
¢/(1+ec) < ¢/(1—ec), the optimal ¢ so that |f(z)— f(c)| < e, for z, [z —c| < § is 6* = ¢/(1+ec).
It clearly depends on ¢ and €. As 6* — 0 as ¢ — 07, we cannot choose a uniform § so that
|f(xz) — f(e)| <6 for all z,¢,|x — c| < J, hence f is not uniformly on (0, c0).

Example 11.2 The function g(x) = #? is not uniformly continuous on [1,00). For, the preim-

age of g on (g(c) —¢e,g(c) +¢) is (V2 —e,v/c2 +¢). One checks that ¢ —v/c2 —e > V2 +e—c¢
hence the optimal § is 6* = V¢ +e—c = /(v ¢? + e+ ¢) which tends to 0 as ¢ — oo. Therefore,

g is not uniformly continuous.

Example 11.3 The function h(z) = sinl/z is not uniformly continuous on (0,1]. For, in
case it is uniformly continuous, for ¢ = 1/2, we can find a ¢ such that |f(z) — f(y)] < 1/2
whenever z,y belongs to an open interval of length less than §. For large n, the points
Tn = 1/2n7m,y, = 1/(2nm 4+ 7/2) both belong to (0,0) but |f(zn) — f(yn)| = 1 > 1/2, con-
tradiction holds. Hence h is not uniformly continuous on (0, 1].

Theorem 11.1 Every continuous function on [a, b is uniformly continuous.

We refer to the textbook for a proof. Note that the same proof works for all dimensions where
the theorem states as, every continuous function on a closed, bounded set in R™ is uniformly
continuous.

Theorem 11.2 Every uniformly continuous function on (a, b) has a unique uniformly continuous
extension to [a, b].

Again we refer to the textbook for a proof. The key observation is that a uniformly continuous
function maps a Cauchy sequence to a Cauchy sequence. The higher dimensional version of
this theorem is that every uniformly continuous function on A C R™ has a unique uniformly
continuous extension to A where A is the union of A and its cluster points.

In the following paragraphs we would like to use the notion of the oscillation of a function to
study uniform continuity. Although most results are valid in all dimensions, we focus on dimen-
sion one.

Let E be a nonempty set in R and f a bounded function on E. The oscillation of f over E is
defined to be

oscgf =supf — iIElff = sup |f(z) — f(y)|
E zyek

Theorem 11.3 (Oscillation Theorem) A bounded function f is uniformly continuous on a
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set E if and only if, given € > 0, there is some ¢ such that on every (open or closed) interval I
of length 4, oscinpf <e.

Proof When f is uniformly continuous, for each € > 0, there is some ¢ such that |f(z)— f(y)| <
g,x,y € E,|r—y| < §. Hence when x,y € INE where the open interval I has length §, |[x—y| < §
and |f(z) — f(y)| < e. Hence, taking sup over all z,y € I N E, we conclude oscinpf < e. Con-
versely, taking €/2 > 0, there is some § such that oscinpf < £/2 whenever I if of length
5. When z,y satisfy |z — y| < §, we can find such an interval I containing x,y. Therefore,

|f(x) = f(y)| <oscinpf <e/2<e.

Example 11.2° The function f(z) = 22 is not uniformly on [0, c0). Let us look at a subinterval
of the form I = (g, 20 +§). Since this function is increasing osc; f = (xg+0)? — 3:3 = 2020+ 462
which tends to infinity as 9 — oo. By Theorem 3, it cannot be uniformly continuous on [0, 00).

Example 11.3° The function sin1/x is not uniformly continuous on (0,1]. Why? Let look at
the subinterval I = (0,4). No matter how small 6 > 0 is, osc;f = 2. By Theorem 11.3 (taking
€ < 2) it cannot be uniformly continuous.

The oscillation of a function on a set can be localised to give the oscillation of a function at a
point. Indeed, for f on E and ¢ € F, define the oscillation of f at ¢ to be

w(c) = 5l_igl+ oscrynef = (iélgosclémEf , Is=(c—9d,c+0).

Note that the oscillation decreases as ¢ shrinks, hence the limit always exists and is equal to the
infimum. It is easy to see that f is continuous at c iff wy(c) = 0.

Monotone Functions

A function is increasing (resp. decreasing ) on an interval I if f(x) < f(y) (resp. f(z) > f(y))
whenever x < y in I. It is strictly increasing(resp. strictly decreasing) if f(z) < f(y) (resp.
f(x) > f(y)) whenever x < y in I. It is clear that f is increasing (resp. strictly increasing) if
and only if —f is decreasing (resp. strictly decreasing).

Theorem 11.4 Let f be monotone on the interval I and ¢ an interior point of I. Then the
right and left limits always exist at c.

See textbook for a proof. Consequently a monotone function is continuous at ¢ if and only if
lim, ,.- f =lim,_,.+ f. (Since f is monotone, f(c) is pinched between the two one-sided limits.
Hence f(c¢) = lim,_,.- f.) If f is defined at the left endpoint a, then lim, ,,+ f exists and f
is continuous at a if and only if lim,_,,+ f = f(a). A similar situation holds at the right endpoint.

Theorem 11.5 The discontinuity set of a monotone function is countable.

Proof Let’s us assume f is increasing on [a,b]. For ¢ € (a,b), clearly ws(c) = lim, ,.+ f —
lim, .- f, so ws(c) > 0iff ¢ is a point of discontinuity of f. Let D be the set of discontinuity of
fin (a,b). We have the decomposition D = |J,, Dy, where Dy, = {z € (a,b) : w¢(z) > 1/k}. We
claim: Each Dy, contains not more than k(f(b) — f(a)) many points. Since the countable union
of a finite set is countable, D is countable.
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Let ¢; > ¢a > -+ > ¢y be points in (a,b). In the following we take N = 2 for simplicity. We
have

fb) = fla) = f(b)— lim f+ lim f— lim f+ lim f— f(a)

= J) = lim S +wle)+ lm £~ f(a)
= (f(b) — lim+ f)+wsler) + (lim f— lim+ ) +wple2) + (lim f— f(a))

> wy(er) +wy(ea)

since the three terms in brackets are non-negative. In general, we have
N
Fb) = fla) = wilei) -
i=1

Now, if we have N many points in Dy, f(b) — f(a) > SN wi(e;) > SN 1/k = N/k, hence
N < k(f(b) — f(a)).

The discontinuity set of f on [a,b] is D and possibly including the endpoints, so it is countable.
Now, consider f is defined on (a,b). Observing (a,b) = {J;[a+1/j,b—1/7], its discontinuity set in
(a,b) is also countable since the discontinuity set restricted to each [a+1/j,b—1/7] is countable.



