
MATH2050C Assignment 11

Deadline: April 8 , 2025.

Hand in: 5.4 no. 3, 4, 7; Suupl. Problems no 1, 2.

Section 5.4 no. 3, 4, 6, 7, 8, 10, 15.

Supplementary Problems

1. Let function f on A satisfy the condition: There is some constant C and α > 0 such that
|f(x) − f(c)| ≤ C|x − c|α for all x, c ∈ A. Show that f is uniformly continuous on A. (It
is called the Lipschitz condition when α = 1.)

2. Let f ∈ C[1,∞) satisfy limx→∞ f(x) = L ∈ R. Show that f is uniformly continuous on
[1,∞).

3. Let f be a uniformly continuous function on [0,∞). Show that there is a constant C such
that |f(x)| ≤ C(1 + x).

See next page



Spring 2025 MATH2050C 2

Uniform Continuity of Functions

Let f be continuous on some nonempty set A in R. When f is continuous at some c ∈ A, it
means for each ε > 0, there is some δ such that |f(x)− f(c)| < ε for all x ∈ A, |x− c| < ε. Here
δ in general depending on c and ε. Now, f is said to be uniformly continuous on E ⊂ A if for
each ε > 0, there is a δ such that |f(x)− f(c)| < ε for all x ∈ E, |x− c| < δ.

Example 11.1 The function f(x) = 1/x is continuous but not uniformly continuous on (0,∞).
Let c ∈ (0,∞) The preimage of f on (f(c) − ε, f(c) + ε) is (c/(1 + εc), c/(1 − εc)). Since
c/(1+εc) < c/(1−εc), the optimal δ so that |f(x)−f(c)| < ε, for x, |x−c| < δ is δ∗ = c/(1+εc).
It clearly depends on c and ε. As δ∗ → 0 as c → 0+, we cannot choose a uniform δ so that
|f(x)− f(c)| < δ for all x, c, |x− c| < δ, hence f is not uniformly on (0,∞).

Example 11.2 The function g(x) = x2 is not uniformly continuous on [1,∞). For, the preim-
age of g on (g(c)− ε, g(c) + ε) is (

√
c2 − ε,

√
c2 + ε). One checks that c−

√
c2 − ε >

√
c2 + ε− c

hence the optimal δ is δ∗ =
√
c2 + ε−c = ε/(

√
c2 + ε+c) which tends to 0 as c → ∞. Therefore,

g is not uniformly continuous.

Example 11.3 The function h(x) = sin 1/x is not uniformly continuous on (0, 1]. For, in
case it is uniformly continuous, for ε = 1/2, we can find a δ such that |f(x) − f(y)| < 1/2
whenever x, y belongs to an open interval of length less than δ. For large n, the points
xn = 1/2nπ, yn = 1/(2nπ + π/2) both belong to (0, δ) but |f(xn) − f(yn)| = 1 > 1/2, con-
tradiction holds. Hence h is not uniformly continuous on (0, 1].

Theorem 11.1 Every continuous function on [a, b] is uniformly continuous.

We refer to the textbook for a proof. Note that the same proof works for all dimensions where
the theorem states as, every continuous function on a closed, bounded set in Rn is uniformly
continuous.

Theorem 11.2 Every uniformly continuous function on (a, b) has a unique uniformly continuous
extension to [a, b].

Again we refer to the textbook for a proof. The key observation is that a uniformly continuous
function maps a Cauchy sequence to a Cauchy sequence. The higher dimensional version of
this theorem is that every uniformly continuous function on A ⊂ Rn has a unique uniformly
continuous extension to A where A is the union of A and its cluster points.

In the following paragraphs we would like to use the notion of the oscillation of a function to
study uniform continuity. Although most results are valid in all dimensions, we focus on dimen-
sion one.

Let E be a nonempty set in R and f a bounded function on E. The oscillation of f over E is
defined to be

oscEf = sup
E

f − inf
E

f = sup
x,y∈E

|f(x)− f(y)|.

Theorem 11.3 (Oscillation Theorem) A bounded function f is uniformly continuous on a
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set E if and only if, given ε > 0, there is some δ such that on every (open or closed) interval I
of length δ, oscI∩Ef ≤ ε.

Proof When f is uniformly continuous, for each ε > 0, there is some δ such that |f(x)−f(y)| <
ε, x, y ∈ E, |x−y| < δ. Hence when x, y ∈ I∩E where the open interval I has length δ, |x−y| < δ
and |f(x)− f(y)| < ε. Hence, taking sup over all x, y ∈ I ∩ E, we conclude oscI∩Ef ≤ ε. Con-
versely, taking ε/2 > 0, there is some δ such that oscI∩Ef ≤ ε/2 whenever I if of length
δ. When x, y satisfy |x − y| < δ, we can find such an interval I containing x, y. Therefore,
|f(x)− f(y)| ≤ oscI∩Ef ≤ ε/2 < ε.

Example 11.2’ The function f(x) = x2 is not uniformly on [0,∞). Let us look at a subinterval
of the form I = (x0, x0+δ). Since this function is increasing oscIf = (x0+δ)2−x20 = 2δx0+4δ2

which tends to infinity as x0 → ∞. By Theorem 3, it cannot be uniformly continuous on [0,∞).

Example 11.3’ The function sin 1/x is not uniformly continuous on (0, 1]. Why? Let look at
the subinterval I = (0, δ). No matter how small δ > 0 is, oscIf = 2. By Theorem 11.3 (taking
ε < 2) it cannot be uniformly continuous.

The oscillation of a function on a set can be localised to give the oscillation of a function at a
point. Indeed, for f on E and c ∈ E, define the oscillation of f at c to be

ωf (c) = lim
δ→0+

oscIδ∩Ef = inf
δ>0

oscIδ∩Ef , Iδ = (c− δ, c+ δ).

Note that the oscillation decreases as δ shrinks, hence the limit always exists and is equal to the
infimum. It is easy to see that f is continuous at c iff ωf (c) = 0.

Monotone Functions

A function is increasing (resp. decreasing ) on an interval I if f(x) ≤ f(y) (resp. f(x) ≥ f(y))
whenever x < y in I. It is strictly increasing(resp. strictly decreasing) if f(x) < f(y) (resp.
f(x) > f(y)) whenever x < y in I. It is clear that f is increasing (resp. strictly increasing) if
and only if −f is decreasing (resp. strictly decreasing).

Theorem 11.4 Let f be monotone on the interval I and c an interior point of I. Then the
right and left limits always exist at c.

See textbook for a proof. Consequently a monotone function is continuous at c if and only if
limx→c− f = limx→c+ f . (Since f is monotone, f(c) is pinched between the two one-sided limits.
Hence f(c) = limx→c− f .) If f is defined at the left endpoint a, then limx→a+ f exists and f
is continuous at a if and only if limx→a+ f = f(a). A similar situation holds at the right endpoint.

Theorem 11.5 The discontinuity set of a monotone function is countable.

Proof Let’s us assume f is increasing on [a, b]. For c ∈ (a, b), clearly ωf (c) = limx→c+ f −
limx→c− f , so ωf (c) > 0 iff c is a point of discontinuity of f . Let D be the set of discontinuity of
f in (a, b). We have the decomposition D =

⋃
k Dk where Dk = {x ∈ (a, b) : ωf (x) ≥ 1/k}. We

claim: Each Dk contains not more than k(f(b)− f(a)) many points. Since the countable union
of a finite set is countable, D is countable.
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Let c1 > c2 > · · · > cN be points in (a, b). In the following we take N = 2 for simplicity. We
have

f(b)− f(a) = f(b)− lim
x→c+1

f + lim
x→c+1

f − lim
x→c−1

f + lim
x→c−1

f − f(a)

= f(b)− lim
x→c+1

f + ωf (c1) + lim
x→c−1

f − f(a)

= (f(b)− lim
x→c+1

f) + ωf (c1) + ( lim
x→c−1

f − lim
x→c+2

f) + ωf (c2) + ( lim
x→c−2

f − f(a))

≥ ωf (c1) + ωf (c2) ,

since the three terms in brackets are non-negative. In general, we have

f(b)− f(a) ≥
N∑
i=1

ωf (ci) .

Now, if we have N many points in Dk, f(b) − f(a) ≥
∑N

i=1 ωf (ci) ≥
∑N

i=1 1/k = N/k, hence
N ≤ k(f(b)− f(a)).

The discontinuity set of f on [a, b] is D and possibly including the endpoints, so it is countable.
Now, consider f is defined on (a, b). Observing (a, b) =

⋃
j [a+1/j, b−1/j], its discontinuity set in

(a, b) is also countable since the discontinuity set restricted to each [a+1/j, b−1/j] is countable.


