
MATH2050B Mathematical Analysis I

Suggested solution to HW 5

(1) Show that f : R→ R given by

f(x) =
1

x2 + 1

is uniformly continuous by using ε-δ terminology.

Solution. For z ∈ R, we have (|z| − 1)2 ≥ 0 which implies that z2 + 1 ≥ 2|z|. Thus,
for any x, y ∈ R,

|f(x)− f(y)| = |x+ y||x− y|
(x2 + 1)(y2 + 1)

≤
(

|x|
(x2 + 1)(y2 + 1)

+
|y|

(x2 + 1)(y2 + 1)

)
|x− y|

≤
(

1

2(y2 + 1)
+

1

2(x2 + 1)

)
|x− y|

≤
(

1

2
+

1

2

)
|x− y| = |x− y|.

Let ε > 0. Take δ = ε. Now, if x, y ∈ R and |x− y| < δ, we have

|f(x)− f(y)| ≤ |x− y| < δ = ε.

Hence f is uniformly continuous.

(2) Suppose f : [0,+∞) → R is a continuous function such that f |[a,+∞) is uniformly
continuous for some a > 0. Show that f is uniformly continuous.

Solution. Let ε > 0. Since f |[0,a+1] is continuous, it is also uniformly continuous by
the Uniform Continuity Theorem. So there exists δ1 > 0 such that

|f(u)− f(v)| < ε whenever u, v ∈ [0, a+ 1] with |u− v| < δ1.

On the other hand, since f |[a,+∞) is uniformly continuous, there δ2 > 0 such that

|f(u)− f(v)| < ε whenever u, v ∈ [a,+∞) with |u− v| < δ2.

Take δ := {δ1, δ2, 1}. Now, if u, v ∈ [0,+∞) and |u − v| < δ, then either both
u, v ∈ [a,+∞) and |u− v| < δ ≤ δ2, so that |f(u)− f(v)| < ε; or one of u, v ∈ [0, a],
and hence both u, v ∈ [0, a+ 1] (since |u− v| ≤ 1), so that |f(u)− f(v)| < ε because
|u− v| < δ ≤ δ1.

(3) If f, g : R → R are two uniformly continuous functions, show that f ◦ g is also
uniformly continuous.
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Solution. Let ε > 0. Since f is uniformly continuous, there exists δ1 > 0 such that

|f(u)− f(v)| < ε whenever u, v ∈ R with |u− v| < δ1.

Since g is uniformly continuous, there exists δ2 > 0 such that

|g(x)− g(y)| < δ1 whenever x, y ∈ R with |x− y| < δ2.

Now, if x, y ∈ R and |x− y| < δ2, then |g(x)− g(y)| < δ1 and hence

|(f ◦ g)(x)− (f ◦ g)(y)| = |f(g(x))− f(g(y))| < ε.

Therefore f ◦ g is uniformly continuous.

(4) If f : R→ R is a continuous function such that

lim
x→+∞

f(x) = L1, lim
x→−∞

f(x) = L2

for some Li. If f(0) > max{L1, L2}, show that there exists x̄ ∈ R such that f(x̄) ≥
f(x) for all x ∈ R.

Solution. Since lim
x→+∞

f(x) = L1, lim
x→−∞

f(x) = L2, there are α1 > 0 and α2 < 0

such that
|f(x)− L1| < ε1 := f(0)− L1 for all x > α1,

and
|f(x)− L2| < ε2 := f(0)− L2 for all x < α2.

Thus f(x) < f(0) if x ∈ R\[α2, α1].

On the other hand, since f |[α2,α1] is continuous, it follows from the Maximum-Minimum
Theorem that there exists x̄ ∈ [α2, α1] such that f(x̄) ≥ f(x) for all x ∈ [α2, α1].

Note that f(x̄) ≥ f(0) since 0 ∈ [α2, α1]. Combining the inequalities above, we have
f(x̄) ≥ f(x) for all x ∈ R.

(5) Let A be a compact set in R. Suppose f : A→ R is a real valued function such that
for any ε > 0, there is a polynomial gε such that supA |f(x)− gε(x)| < ε. Show that
f is uniformly continuous.

Solution. Let ε > 0. By the assumption, there exists a polynomial gε such that
supA |f(x) − gε(x)| < ε/3. As a polynomial, gε is continuous on R. Since A is a
compact set in R, gε is also uniformly continuous on A. Then there exists δ > 0 such
that

|gε(u)− gε(v)| < ε/3 whenever u, v ∈ A with |u− v| < δ.

Now, if u, v ∈ A and |u− v| < δ, we have

|f(u)− f(v)| ≤ |f(u)− gε(u)|+ |gε(u)− gε(v)|+ |gε(v)− f(v)|
< ε/3 + ε/3 + ε/3 = ε.

Therefore f is uniformly continuous.
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(6) Suppose f : (0, 1] → R is a bounded continuous function. Show that the function
given by g(x) = xf(x) is uniformly continuous on (0, 1).

Solution. Since f is bounded, there exists M > 0 such that |f(x)| ≤M for x ∈ (0, 1].

Let ε > 0. Fix c ∈ (0, 1) such that c < ε
2M

. Since f |[c,1] is continuous by the
assumption, it is also uniformly continuous by the Uniform Continuity Theorem.
Then there exists δ > 0 such that

|f(u)− f(v)| < ε/2 whenever u, v ∈ [c, 1] with |u− v| < δ.

Take δ′ := {δ, ε
2M
}. Now, if u, v ∈ (0, 1) and |u− v| < δ′, then either both u, v ∈ [c, 1],

so that

|uf(u)− vf(v)| ≤ |u||f(u)− f(v)|+ |f(v)||u− v| < 1 · ε
2

+M · ε

2M
= ε;

or at least one (say u) of u, v belongs to (0, c), so that

|uf(u)− vf(v)| ≤ |u||f(u)− f(v)|+ |f(v)||u− v| < c · 2M +M · ε

2M
≤ ε.

Therefore g is uniformly continuous on (0, 1).

Alternative solution:

Since f is bounded, it follows from Squeeze Theorem that lim
x→0+

xf(x) = 0. Thus g can

be extended to a continuous function on [0, 1] by defining g(0) = 0. By the Uniform
Continuity Theorem, g is uniformly continuous on [0, 1]. In particular, g is uniformly
continuous on (0, 1).


