MATH2050B Mathematical Analysis I Suggested solution to HW 5

(1) Show that $f : \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \frac{1}{x^2 + 1}$$

is uniformly continuous by using ε - δ terminology.

Solution. For $z \in \mathbb{R}$, we have $(|z|-1)^2 \ge 0$ which implies that $z^2 + 1 \ge 2|z|$. Thus, for any $x, y \in \mathbb{R}$,

$$\begin{aligned} |f(x) - f(y)| &= \frac{|x+y||x-y|}{(x^2+1)(y^2+1)} \\ &\leq \left(\frac{|x|}{(x^2+1)(y^2+1)} + \frac{|y|}{(x^2+1)(y^2+1)}\right)|x-y| \\ &\leq \left(\frac{1}{2(y^2+1)} + \frac{1}{2(x^2+1)}\right)|x-y| \\ &\leq \left(\frac{1}{2} + \frac{1}{2}\right)|x-y| = |x-y|. \end{aligned}$$

Let $\varepsilon > 0$. Take $\delta = \varepsilon$. Now, if $x, y \in \mathbb{R}$ and $|x - y| < \delta$, we have

$$|f(x) - f(y)| \le |x - y| < \delta = \varepsilon.$$

Hence f is uniformly continuous.

(2) Suppose $f : [0, +\infty) \to \mathbb{R}$ is a continuous function such that $f|_{[a, +\infty)}$ is uniformly continuous for some a > 0. Show that f is uniformly continuous.

Solution. Let $\varepsilon > 0$. Since $f|_{[0,a+1]}$ is continuous, it is also uniformly continuous by the Uniform Continuity Theorem. So there exists $\delta_1 > 0$ such that

$$|f(u) - f(v)| < \varepsilon$$
 whenever $u, v \in [0, a+1]$ with $|u - v| < \delta_1$.

On the other hand, since $f|_{[a,+\infty)}$ is uniformly continuous, there $\delta_2 > 0$ such that

$$|f(u) - f(v)| < \varepsilon$$
 whenever $u, v \in [a, +\infty)$ with $|u - v| < \delta_2$.

Take $\delta := \{\delta_1, \delta_2, 1\}$. Now, if $u, v \in [0, +\infty)$ and $|u - v| < \delta$, then either both $u, v \in [a, +\infty)$ and $|u - v| < \delta \le \delta_2$, so that $|f(u) - f(v)| < \varepsilon$; or one of $u, v \in [0, a]$, and hence both $u, v \in [0, a + 1]$ (since $|u - v| \le 1$), so that $|f(u) - f(v)| < \varepsilon$ because $|u - v| < \delta \le \delta_1$.

(3) If $f, g : \mathbb{R} \to \mathbb{R}$ are two uniformly continuous functions, show that $f \circ g$ is also uniformly continuous.

Solution. Let $\varepsilon > 0$. Since f is uniformly continuous, there exists $\delta_1 > 0$ such that

$$|f(u) - f(v)| < \varepsilon$$
 whenever $u, v \in \mathbb{R}$ with $|u - v| < \delta_1$.

Since g is uniformly continuous, there exists $\delta_2 > 0$ such that

$$|g(x) - g(y)| < \delta_1$$
 whenever $x, y \in \mathbb{R}$ with $|x - y| < \delta_2$.

Now, if $x, y \in \mathbb{R}$ and $|x - y| < \delta_2$, then $|g(x) - g(y)| < \delta_1$ and hence

$$|(f \circ g)(x) - (f \circ g)(y)| = |f(g(x)) - f(g(y))| < \varepsilon.$$

Therefore $f \circ g$ is uniformly continuous.

(4) If $f : \mathbb{R} \to \mathbb{R}$ is a continuous function such that

$$\lim_{x \to +\infty} f(x) = L_1, \quad \lim_{x \to -\infty} f(x) = L_2$$

for some L_i . If $f(0) > \max\{L_1, L_2\}$, show that there exists $\bar{x} \in \mathbb{R}$ such that $f(\bar{x}) \ge f(x)$ for all $x \in \mathbb{R}$.

Solution. Since $\lim_{x \to +\infty} f(x) = L_1$, $\lim_{x \to -\infty} f(x) = L_2$, there are $\alpha_1 > 0$ and $\alpha_2 < 0$ such that

$$|f(x) - L_1| < \varepsilon_1 \coloneqq f(0) - L_1 \quad \text{for all } x > \alpha_1,$$

and

$$|f(x) - L_2| < \varepsilon_2 \coloneqq f(0) - L_2 \quad \text{for all } x < \alpha_2.$$

Thus f(x) < f(0) if $x \in \mathbb{R} \setminus [\alpha_2, \alpha_1]$.

On the other hand, since $f|_{[\alpha_2,\alpha_1]}$ is continuous, it follows from the Maximum-Minimum Theorem that there exists $\bar{x} \in [\alpha_2, \alpha_1]$ such that $f(\bar{x}) \ge f(x)$ for all $x \in [\alpha_2, \alpha_1]$.

Note that $f(\bar{x}) \ge f(0)$ since $0 \in [\alpha_2, \alpha_1]$. Combining the inequalities above, we have $f(\bar{x}) \ge f(x)$ for all $x \in \mathbb{R}$.

(5) Let A be a compact set in \mathbb{R} . Suppose $f : A \to \mathbb{R}$ is a real valued function such that for any $\varepsilon > 0$, there is a polynomial g_{ε} such that $\sup_{A} |f(x) - g_{\varepsilon}(x)| < \varepsilon$. Show that f is uniformly continuous.

Solution. Let $\varepsilon > 0$. By the assumption, there exists a polynomial g_{ε} such that $\sup_{A} |f(x) - g_{\varepsilon}(x)| < \varepsilon/3$. As a polynomial, g_{ε} is continuous on \mathbb{R} . Since A is a compact set in \mathbb{R} , g_{ε} is also uniformly continuous on A. Then there exists $\delta > 0$ such that

$$|g_{\varepsilon}(u) - g_{\varepsilon}(v)| < \varepsilon/3$$
 whenever $u, v \in A$ with $|u - v| < \delta$.

Now, if $u, v \in A$ and $|u - v| < \delta$, we have

$$|f(u) - f(v)| \le |f(u) - g_{\varepsilon}(u)| + |g_{\varepsilon}(u) - g_{\varepsilon}(v)| + |g_{\varepsilon}(v) - f(v)|$$

$$< \varepsilon/3 + \varepsilon/3 + \varepsilon/3 = \varepsilon.$$

Therefore f is uniformly continuous.

(6) Suppose $f : (0,1] \to \mathbb{R}$ is a bounded continuous function. Show that the function given by g(x) = xf(x) is uniformly continuous on (0,1).

Solution. Since f is bounded, there exists M > 0 such that $|f(x)| \leq M$ for $x \in (0, 1]$. Let $\varepsilon > 0$. Fix $c \in (0, 1)$ such that $c < \frac{\varepsilon}{2M}$. Since $f|_{[c,1]}$ is continuous by the assumption, it is also uniformly continuous by the Uniform Continuity Theorem. Then there exists $\delta > 0$ such that

$$|f(u) - f(v)| < \varepsilon/2$$
 whenever $u, v \in [c, 1]$ with $|u - v| < \delta$.

Take $\delta' \coloneqq \{\delta, \frac{\varepsilon}{2M}\}$. Now, if $u, v \in (0, 1)$ and $|u - v| < \delta'$, then either both $u, v \in [c, 1]$, so that

$$|uf(u) - vf(v)| \le |u||f(u) - f(v)| + |f(v)||u - v| < 1 \cdot \frac{\varepsilon}{2} + M \cdot \frac{\varepsilon}{2M} = \varepsilon_{2M}$$

or at least one (say u) of u, v belongs to (0, c), so that

$$|uf(u) - vf(v)| \le |u||f(u) - f(v)| + |f(v)||u - v| < c \cdot 2M + M \cdot \frac{\varepsilon}{2M} \le \varepsilon.$$

Therefore g is uniformly continuous on (0, 1).

Alternative solution:

Since f is bounded, it follows from Squeeze Theorem that $\lim_{x\to 0^+} xf(x) = 0$. Thus g can be extended to a continuous function on [0,1] by defining g(0) = 0. By the Uniform Continuity Theorem, g is uniformly continuous on [0,1]. In particular, g is uniformly continuous on (0,1).