MATH2050B Mathematical Analysis I Suggested solution to HW 2

(1) Use the ε -N terminology, show the followings:

(a) $\lim_{n \to +\infty} \frac{n^3 + 2n + 1}{n^3 - 2} = 1.$ (b) $\lim_{n \to +\infty} n^2 3^{-n} = 0.$

Solution. (a) Note that, for $n \ge 2$,

$$\left|\frac{n^3 + 2n + 1}{n^3 - 2} - 1\right| = \left|\frac{2n + 3}{n^3 - 2}\right| \le \frac{2n + 3n}{\frac{1}{2}n^3} = \frac{10}{n^2}.$$

Let $\varepsilon > 0$. By Archimedean Property, there is $N \in \mathbb{N}$ such that $N > \max\{2, 10/\varepsilon\}$. Now, if $n \ge N$, we have

$$\left|\frac{n^3 + 2n + 1}{n^3 - 2} - 1\right| \le \frac{10}{n^2} \le \frac{10}{n} \le \frac{10}{N} < \varepsilon$$

Therefore $\lim_{n \to +\infty} \frac{n^3 + 2n + 1}{n^3 - 2} = 1.$

(b) Note that, for $n \geq 3$, the Binomial Theorem yields

$$3^{n} = (1+2)^{n} = \sum_{k=0}^{n} \binom{n}{k} 2^{k} \ge \frac{n(n-1)(n-2)}{6} \cdot 2^{3},$$

and so

$$0 \le n^2 3^{-n} \le \frac{6n}{8(n-1)(n-2)} \le \frac{6n}{4n(n-2)} \le \frac{2}{n-2}$$

Let $\varepsilon > 0$. By Archimedean Property, there is $N \in \mathbb{N}$ such that $N > \max\{3, 2/\varepsilon + 2\}$. Now, if $n \ge N$, we have

$$\left|n^{2}3^{-n}-0\right| = n^{2}3^{-n} \le \frac{2}{n-2} \le \frac{2}{N-2} < \varepsilon.$$

Therefore $\lim_{n \to +\infty} n^2 3^{-n} = 0.$

(2) Suppose (x_n) is a sequence of real numbers such that $x_n \to x$ for some $x \in \mathbb{R}$.

- (a) If $x_n \in [a, b]$ for some a, b, show that $x \in [a, b]$.
- (b) If $x \in (a, b)$, show that there exists N such that $x_n \in (a, b)$ for all n > N.

Solution. (a) Suppose on the contrary that x < a. Take $\varepsilon_0 = \frac{a-x}{2} > 0$. Since $x_n \to x$, there is $N \in \mathbb{N}$ such that for all $n \ge N$, we have $|x_n - x| < \varepsilon_0$, and hence

$$x_n < x + \varepsilon_0 = x + \frac{a - x}{2} = \frac{x + a}{2} < a$$

This contradicts the assumption that $x_n \in [a, b]$. Thus we must have $x \ge a$. Similarly, we can show that $x \le b$. (b) We are essentially repeating the argument in (a). Pick $\varepsilon_0 > 0$ such that $(x - \varepsilon_0, x + \varepsilon_0) \subset (a, b)$ (for example, one may take $\varepsilon_0 = \min\{x - a, b - x\}/2$). Since $x_n \to x$, there is $N \in \mathbb{N}$ such that for all $n \ge N$, we have $|x_n - x| < \varepsilon_0$, and hence

$$x_n < x + \varepsilon_0 \le x + \frac{b-x}{2} = \frac{b+x}{2} < b,$$

and

$$x_n > x - \varepsilon_0 \ge x - \frac{x - a}{2} = \frac{a + x}{2} > a$$

Therefore, $x_n \in (a, b)$ for all $n \ge N$.

(3) Show that if $z_n = (a^n + b^n)^{1/n}$ for some distinct a, b > 0, then $z_n \to \max\{a, b\}$

Solution. Without loss of generality, we assume that 0 < a < b. Then

$$b \le z_n \le (b^n + b^n)^{1/n} = b \cdot 2^{1/n}$$
 for $n \in \mathbb{N}$.

By Example 3.1.11(c) in the textbook, we have $\lim_{n \to +\infty} b \cdot 2^{1/n} = b \cdot 1 = b$. The Squeeze Theorem now implies that $\lim_{n \to +\infty} z_n = b = \max\{a, b\}$.

(4) Suppose (x_n) is a sequence of positive real numbers such that $x_n^{1/n} \to L$ for some $L \in [0, 1)$. Show that $x_n \to 0$ as $n \to +\infty$. What if L = 1, what can you conclude? Justify your answer by either proving this or giving a counter-example.

Solution. If $L \in [0,1)$, choose r such that L < r < 1. Since $x_n^{1/n} \to L$, there is $N \in \mathbb{N}$ such that

$$0 < x_n^{1/n} < r \qquad \text{for } n \ge N.$$

Thus

$$0 < x_n < r^n$$
 for $n \ge N$.

Note that $\lim_{n \to +\infty} r^n = 0$ since 0 < r < 1. By the Squeeze Theorem, $\lim_{n \to +\infty} x_n = 0$.

If L = 1, then (x_n) may or may not converge.

For example, if $x_n = 1$ for all $n \in \mathbb{N}$, then $\lim_{n \to \infty} x_n^{1/n} = 1 = \lim_{n \to \infty} x_n$.

On the other hand, consider $x_n = 2 + (-1)^n$ for $n \in \mathbb{N}$. Clearly (x_n) is divergent as it oscillates between 1 and 3. Since

$$1 \le x_n^{1/n} \le 3^{1/n} \qquad \text{for } n \in \mathbb{N},$$

and $\lim_{n \to \infty} 3^{1/n} = 1$, we have $\lim_{n \to \infty} x_n^{1/n} = 1$ by the Squeeze Theorem.