MATH2050B Mathematical Analysis I Suggested solution to HW 1

(1) Using the Axioms to show that for all $a, b \in \mathbb{R}$,

$$(-a)^2 = a^2$$
 and $(a + (-b))^2 = a^2 + (-2ab) + b^2$.

Solution. First we show that if a + b = 0, then b = -a (*). Indeed,

b = b + 0	(by A3)
= b + (a + (-a))	(by A4)
= (a+b) + (-a)	(by A1, A2)
= 0 + (-a)	(by assumption)
=-a	(by A3).

Thus, we have -a = (-1)a (**) because

$$a + (-1)a = 1 \cdot a + (-1)a$$
 (by M3)

$$= (1 + (-1)) \cdot a$$
 (by D)

$$= 0 \cdot a$$
 (by A4)

$$= a \cdot 0$$
 (by M1)

$$= 0$$
 (by Theorem 2.1.2(c)).

Hence, to show that $(-a)^2 = a^2$, it suffices to show that $(-a)^2 + (-a^2) = 0$. Now

$$(-a)^{2} + (-a^{2}) = (-a)^{2} + (-1)a^{2}$$
 (by (**))

$$= (-a)^{2} + ((-1)a)a$$
 (by M1, M2)

$$= (-a)^{2} + (-a)a$$
 (by (**))

$$= (-a)(-a+a)$$
 (by D)

$$= (-a) \cdot 0$$
 (by A4)

$$= 0$$
 (by Theorem 2.1.2(c)).

For the second equality,

$$\begin{aligned} (a+(-b))^2 &= a(a+(-b)) + (-b)(a+(-b) & \text{(by D)} \\ &= a^2 + a(-b) + (-b)a + (-b)^2 & \text{(by D)} \\ &= a^2 + a(-b) + a(-b) + b^2 & \text{(by M1, first equality)} \\ &= a^2 + a((-1)b) + a((-1)b) + b^2 & \text{(by (**))} \\ &= a^2 + (-1)(ab) + (-1)(ab) + b^2 & \text{(by M1, M2)} \\ &= a^2 + (-1)(2ab) + b^2 & \text{(by D)} \\ &= a^2 + (-2ab) + b^2 & \text{(by (**))}. \end{aligned}$$

(2) If x > 0, show that there exists $n \in \mathbb{N}$ such that $3^{-n} < x$.

Solution. By Bernoulli's Inequality, $3^n = (1+2)^n \ge 1+2n > n$ for all $n \in \mathbb{N}$. If x > 0, the Archimedean property implies that there exists $n \in \mathbb{N}$ such that 1/n < x, and hence $3^{-n} < 1/n < x$.

(3) Show that if A, B are bounded subsets of \mathbb{R} , then

$$\sup(A+B) = \sup A + \sup B$$

where $A + B = \{a + b : a \in A, b \in B\}$. Do we have

$$\sup A \cdot \sup B = \sup(A \cdot B)$$

where $A \cdot B = \{ab : a \in A, b \in B\}$? Justify your answer.

Solution. We further assume that A and B are non-empty. Otherwise, the corresponding suprema do not exist.

By the Completeness Axiom of \mathbb{R} , both sup A and sup B exist. It is clear that sup A + sup B is an upper bound of A + B. Indeed, for any $a \in A, b \in B$, we have $a \leq \sup A$, $b \leq \sup B$ and hence $a + b \leq \sup A + \sup B$.

Next we show that $\sup A + \sup B$ is the least upper bound of A + B. Let $\varepsilon > 0$. By Lemma 2.3.4, there are $a_0 \in A$ and $b_0 \in B$ such that $a_0 > \sup A - \frac{\varepsilon}{2}$ and $b_0 > \sup B - \frac{\varepsilon}{2}$. Hence $a_0 + b_0 > \sup A + \sup B - \varepsilon$. By Lemma 2.3.4 again, we have $\sup(A + B) = \sup A + \sup B$.

Consider $A = B = \{-1, 0\}$. Then $\sup A = \sup B = 0$, and so $\sup A \cdot \sup B = 0$. However, $A \cdot B = \{0, 1\}$, so that $\sup(A \cdot B) = 1 \neq 0 = \sup A \cdot \sup B$.

(4) Let X be a non-empty set and $f, g : X \to \mathbb{R}$ be two real-valued functions with bounded ranges. Show that

$$\sup\{f(x) + g(x) : x \in X\} \le \sup\{f(x) : x \in X\} + \sup\{g(x) : x \in X\}.$$

Give an example showing that the inequality can be a strict inequality.

Solution. Since f and g have bounded ranges, $A \coloneqq \sup\{f(x) : x \in X\}$ and $B \coloneqq \sup\{g(x) : x \in X\}$ exist by the Completeness Axiom of \mathbb{R} . For all $x \in X$, we have $f(x) \leq A$ and $g(x) \leq B$, and so

$$f(x) + g(x) \le A + B.$$

Now A + B is an upper bound of $\{f(x) + g(x) : x \in X\}$, and thus

$$\sup\{f(x) + g(x) : x \in X\} \le A + B = \sup\{f(x) : x \in X\} + \sup\{g(x) : x \in X\}.$$

Let X = [-1, 1] and let $f, g : X \to \mathbb{R}$ be defined by f(x) = -g(x) = x. Then

$$\sup\{f(x) + g(x) : x \in X\} = 0 < 1 + 1 = \sup\{f(x) : x \in X\} + \sup\{g(x) : x \in X\}.$$

(5) Show by using completeness that there is a unique $x \in \mathbb{R}$ so that x > 0 and $x^3 = 4$.

Solution. Let $S = \{s \in \mathbb{R} : s^3 < 4\}$. Then $S \neq \emptyset$ (for example $1 \in S$) and S is bounded above by 2 (for $s > 2 \implies s^3 > 8 > 4$). By the Completeness Axiom of \mathbb{R} , $x \coloneqq \sup S$ exists. Clearly $x \ge 1 > 0$. We will show that $x^3 = 4$ by ruling out the other two possibilities: $x^3 < 4$ and $x^3 > 4$.

We will make use of the following elementary inequality: if $0 \le a \le b$, then

$$b^{n} - a^{n} = (b - a)(b^{n-1} + b^{n-2}a + \dots + a^{n-1}) \le (b - a)nb^{n-1}$$

Suppose $x^3 < 4$. Take $\varepsilon = \frac{1}{2} \min\{\frac{4-x^3}{3(x+1)^2}, 1\} > 0$. Then

$$(x+\varepsilon)^3 - x^3 \le 3\varepsilon(x+\varepsilon)^2 \le \frac{(x+\varepsilon)^2}{2(x+1)^2}(4-x^3) < 4-x^3,$$

and so $(x + \varepsilon)^3 < 4$. Since $x < x + \varepsilon$, this contradicts the fact that $x = \sup S$ is an upper bound of S.

Suppose $x^3 > 4$. Take $\varepsilon = \frac{x^3 - 4}{6x^2} \in (0, x)$. Then

$$x^{3} - (x - \varepsilon)^{3} \le 3\varepsilon x^{2} = \frac{1}{2}(x^{3} - 4) < x^{3} - 4,$$

and so $(x - \varepsilon)^3 > 4$. Now $x - \varepsilon$ is an upper bound of S since $s > x - \varepsilon \implies s^3 > (x - \varepsilon)^3 > 4$. Again this contradicts the fact that $x = \sup S$ is the least upper bound of S.

Thus, we must have $x^3 = 4$.

The uniqueness of such x is clear because $0 < u < v \implies u^3 < v^3$.

Therefore, there is a unique $x \in \mathbb{R}$ so that x > 0 and $x^3 = 4$.